机译:使用改进的基于相关性的特征选择和随机森林分类器进行自动癫痫发作检测
Univ Jinan, Sch Informat Sci & Engn, Shandong Prov Key Lab Network Based Intelligent C, 336 Nanxinzhuang West Rd, Jinan 250022, Peoples R China;
Univ Jinan, Sch Informat Sci & Engn, Shandong Prov Key Lab Network Based Intelligent C, 336 Nanxinzhuang West Rd, Jinan 250022, Peoples R China;
Univ Jinan, Sch Informat Sci & Engn, Shandong Prov Key Lab Network Based Intelligent C, 336 Nanxinzhuang West Rd, Jinan 250022, Peoples R China;
Univ Notre Dame, Dept Comp Sci & Engn, USA 257 Fitzpatrick Hall, Notre Dame, IN 46556 USA;
Electroencephalogram (EEG); Discrete Wavelet transformation (DWT); Correlation-based Feature Selection (CFS); Improved Correlation-based Feature Selection (ICFS); Random Forest (RF);
机译:使用Relieff特征选择和长短短期内存分类器自动癫痫癫痫发作识别
机译:使用连续分解指数的自动检测癫痫发作并在长期脑电图中支持向量机分类器
机译:SVM分类器自动检测DWT基于矩形截止物的DWT基于Sigmoid熵的性能评价
机译:通过使用基于扩展相关性的特征选择分析可穿戴的EEG信号来自动进行癫痫发作检测
机译:用于癫痫发作检测的线性SVM分类器的硬件实现
机译:IPCarf:使用增量主成分分析特征选择和随机林分类器改善LNCRNA疾病关联预测
机译:通过使用延长的基于相关性的特征选择分析可穿戴的EEG信号自动癫痫癫痫发作检测