首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A new stabilized finite element formulation for scalar convection-diffusion problems: the streamline and approximate upwind/Petrov―Galerkin method
【24h】

A new stabilized finite element formulation for scalar convection-diffusion problems: the streamline and approximate upwind/Petrov―Galerkin method

机译:用于标量对流扩散问题的新的稳定有限元公式:流线和近似上风/ Petrov-Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

A new stabilized and accurate finite element formulation for convection-dominated problems is herein developed. The basis of the new formulation is the choice of a new upwind function. The upwind function chosen for the new method provokes its degeneration into the SUPG or CAU methods, depending on the approximate solution's regularity. The accuracy and stability of the new formulation for the linear and scalar advection-diffusion equation is demonstrated in several numerical examples.
机译:本文开发了一种新的稳定且精确的有限元公式,用于对流占优的问题。新公式的基础是选择新的迎风功能。为新方法选择的迎风函数会导致其退化为SUPG或CAU方法,具体取决于近似解的规则性。在几个数值示例中证明了线性和标量对流扩散方程的新公式的准确性和稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号