首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A new upwind function in stabilized finite element formulations, using linear and quadratic elements for scalar convection-diffusion problems
【24h】

A new upwind function in stabilized finite element formulations, using linear and quadratic elements for scalar convection-diffusion problems

机译:使用线性和二次元解决标量对流扩散问题的稳定有限元公式中的新迎风函数

获取原文
获取原文并翻译 | 示例

摘要

This article presents a study on the function of the Peclet number that appears in the upwind function of the GLS, CAU and SAUPG methods, using linear and quadratic triangular elements, as well as bilinear and quadratic quadrilateral elements. The numerical experiments indicate that in the case of elements with faces on the "outflow boundary", the upwind function is strongly dependent on the geometry and on the degree of the interpolate polynomial. A new function of the Peclet number is therefore proposed, to take these effects into consideration, creating a new method of stabilization for higher order elements. This new stabilized and accurate finite element formulation for convection dominated problems, based on the idea of the SAUPG method, uses the GLS formulation as starting point.
机译:本文介绍了使用线性和二次三角元素以及双线性和二次四边形元素对出现在GLS,CAU和SAUPG方法的迎风函数中的Peclet数的函数的研究。数值实验表明,在元素的面在“流出边界”上的情况下,迎风函数在很大程度上取决于几何形状和内插多项式的阶数。因此,提出了Peclet数的新函数,以考虑这些影响,从而为高阶元素创建了新的稳定化方法。基于SAUPG方法的思想,这种对流占优问题的新的稳定且精确的有限元公式以GLS公式为起点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号