首页> 外文会议>Finite difference methods, theory and applications >Superconvergence of Some Linear and Quadratic Functionals for Higher-Order Finite Elements
【24h】

Superconvergence of Some Linear and Quadratic Functionals for Higher-Order Finite Elements

机译:高阶有限元的一些线性和二次函数的超收敛

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the calculation of linear and quadratic functionals of approximate solutions obtained by the finite element method. It is shown that under certain conditions the output functionals of an approximate solution are computed with higher order of accuracy than that of the solution itself. These abstract results are illustrated by two numerical examples for the Poisson equation.
机译:本文讨论了通过有限元方法获得的近似解的线性和二次函数的计算。结果表明,在某些条件下,近似解的输出函数的计算精度要比解本身的精度高。通过泊松方程的两个数值示例来说明这些抽象结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号