首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: Application to the vibrating piano string
【24h】

Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: Application to the vibrating piano string

机译:非线性哈密顿波动方程组的能量守恒方案:在振动琴弦中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper considers a general class of nonlinear systems, "nonlinear Hamiltonian systems of wave equations". The first part of our work focuses on the mathematical study of these systems, showing central properties (energy preservation, stability, hyperbolicity, finite propagation velocity, etc.). Space discretization is made in a classical way (variational formulation) and time discretization aims at numerical stability using an energy technique. A definition of "preserving schemes" is introduced, and we show that explicit schemes or partially implicit schemes which are preserving according to this definition cannot be built unless the model is trivial. A general energy preserving second order accurate fully implicit scheme is built for any continuous system that fits the nonlinear Hamiltonian systems of wave equations class. The problem of the vibration of a piano string is taken as an example. Nonlinear coupling between longitudinal and transversal modes is modeled in the "geometrically exact model", or approximations of this model. Numerical results are presented.
机译:本文考虑了非线性系统的一般类别,即“波动方程的非线性哈密顿系统”。我们工作的第一部分集中于对这些系统的数学研究,显示出中心特性(能量保存,稳定性,双曲率,有限传播速度等)。空间离散化是通过经典方式(变分公式化)进行的,时间离散化的目标是使用能量技术实现数值稳定性。引入了“保留方案”的定义,并且我们表明除非该模型是微不足道的,否则不能建立根据该定义进行保留的显式方案或部分隐式方案。对于适合波动方程类的非线性哈密顿系统的任何连续系统,都建立了通用的节能二阶精确完全隐式方案。以钢琴弦的振动问题为例。纵向和横向模式之间的非线性耦合在“几何精确模型”或该模型的近似模型中进行建模。给出了数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号