首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Sparse Variational Bayesian approximations for nonlinear inverse problems: Applications in nonlinear elastography
【24h】

Sparse Variational Bayesian approximations for nonlinear inverse problems: Applications in nonlinear elastography

机译:非线性反问题的稀疏变分贝叶斯近似:在非线性弹性成像中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an efficient Bayesian framework for solving nonlinear, high-dimensional model calibration problems. It is based on a Variational Bayesian formulation that aims at approximating the exact posterior by means of solving an optimization problem over an appropriately selected family of distributions. The goal is two-fold. Firstly, to find lower-dimensional representations of the unknown parameter vector that capture as much as possible of the associated posterior density, and secondly to enable the computation of the approximate posterior density with as few forward calls as possible. We discuss how these objectives can be achieved by using a fully Bayesian argumentation and employing the marginal likelihood or evidence as the ultimate model validation metric for any proposed dimensionality reduction. We demonstrate the performance of the proposed methodology for problems in nonlinear elastography where the identification of the mechanical properties of biological materials can inform non-invasive, medical diagnosis. An Importance Sampling scheme is finally employed in order to validate the results and assess the efficacy of the approximations provided. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了一个有效的贝叶斯框架,用于解决非线性,高维模型校准问题。它基于变分贝叶斯公式,旨在通过解决在适当选择的分布族上的优化问题来近似精确的后验。目标是双重的。首先,寻找未知参数向量的低维表示形式,以尽可能多地捕获相关的后验密度,其次,以尽可能少的前向调用实现近似后验密度的计算。我们讨论了如何通过使用完全贝叶斯论证并将边际可能性或证据用作任何拟议的降维的最终模型验证指标来实现这些目标。我们证明了所提出的方法在非线性弹性成像中的问题的性能,其中生物材料的机械性能的识别可以为无创医学诊断提供信息。最后采用重要抽样方案,以验证结果并评估所提供近似方法的功效。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号