首页> 外文期刊>Automatic Control, IEEE Transactions on >Sparse Bayesian Nonlinear System Identification Using Variational Inference
【24h】

Sparse Bayesian Nonlinear System Identification Using Variational Inference

机译:基于变分推理的稀疏贝叶斯非线性系统辨识

获取原文
获取原文并翻译 | 示例

摘要

Bayesian nonlinear system identification for one of the major classes of dynamic model, the nonlinear autoregressive with exogenous input (NARX) model, has not been widely studied to date. Markov chain Monte Carlo (MCMC) methods have been developed, which tend to be accurate but can also be slow to converge. In this contribution, we present a novel, computationally efficient solution to sparse Bayesian identification of the NARX model using variational inference, which is orders of magnitude faster than the MCMC methods. A sparsity-inducing hyper-prior is used to solve the structure detection problem. Key results include: 1) successful demonstration of the method on low signal-to-noise ratio signals (down to 2 dB); 2) successful benchmarking in terms of speed and accuracy against a number of other algorithms: Bayesian LASSO, reversible jump MCMC, forward regression orthogonalization, LASSO, and simulation error minimization with pruning; 3) accurate identification of a real world system, an electroactive polymer; and 4) demonstration for the first time of numerically propagating the estimated nonlinear time-domain model parameter uncertainty into the frequency domain.
机译:贝叶斯非线性系统辨识是动态模型的主要类别之一,带有外源输入的非线性自回归模型(NARX)至今尚未得到广泛研究。已经开发了马尔可夫链蒙特卡罗(MCMC)方法,该方法趋于准确,但收敛速度也很慢。在此贡献中,我们提出了一种新颖的,计算有效的解决方案,可使用变分推理来稀疏贝叶斯识别NARX模型,该方法比MCMC方法要快几个数量级。稀疏诱导超优先级用于解决结构检测问题。关键结果包括:1)成功演示了在低信噪比信号(低至2 dB)上的方法; 2)在速度和准确性方面相对于许多其他算法进行了成功的基准测试:贝叶斯LASSO,可逆跳MCMC,正向回归正交化,LASSO以及通过修剪使仿真误差最小化; 3)准确识别真实系统中的电活性聚合物; 4)首次演示将估计的非线性时域模型参数不确定性数值传播到频域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号