首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A lowest-order composite finite element exact sequence on pyramids
【24h】

A lowest-order composite finite element exact sequence on pyramids

机译:金字塔上的最低阶复合有限元精确序列

获取原文
获取原文并翻译 | 示例

摘要

Composite basis functions for pyramidal elements on the spaces H-1(Omega), H(curl, Omega), H(div, Omega) and L-2(Omega) are presented. In particular, we construct the lowest-order composite pyramidal elements and show that they respect the de Rham diagram, i.e. we have an exact sequence and satisfy the commuting property. Moreover, the finite elements are fully compatible with the standard finite elements for the lowest-order Raviart-Thomas-Nedelec sequence on tetrahedral and hexahedral elements. That is to say, the new elements have the same degrees of freedom on the shared interface with the neighbouring hexahedral or tetrahedra elements, and the basis functions are conforming in the sense that they maintain the required level of continuity (full, tangential component, normal component, etc.) across the interface. Furthermore, we study the approximation properties of the spaces as an initial partition consisting of tetrahedra, hexahedra and pyramid elements are successively subdivided and show that the spaces result in the same (optimal) order of approximation in terms of the mesh size h as one would obtain using purely hexahedral or purely tetrahedral partitions. (C) 2017 Elsevier B.V. All rights reserved.
机译:提出了空间H-1(Omega),H(curl,Omega),H(div,Omega)和L-2(Omega)上金字塔元素的复合基函数。特别是,我们构造了最低阶的复合金字塔元素,并表明它们遵守de Rham图,即我们具有精确的序列并满足通勤特性。此外,有限元与四面体和六面体元素上最低阶Raviart-Thomas-Nedelec序列的标准有限元完全兼容。也就是说,新元素在与相邻六面体或四面体元素的共享界面上具有相同的自由度,并且基本函数在某种意义上是一致的,它们保持了所需的连续性水平(完整,切向分量,法线组件等)。此外,我们研究了空间的逼近性质,将由四面体,六面体和金字塔元素组成的初始分区相继细分,结果表明,按照网格尺寸h,这些空间的逼近顺序相同(最佳)。使用纯六面体或纯四面体分区获得。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号