首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >High-order composite finite element exact sequences based on tetrahedral-hexahedral-prismatic-pyramidal partitions
【24h】

High-order composite finite element exact sequences based on tetrahedral-hexahedral-prismatic-pyramidal partitions

机译:基于四面体-六面体-棱锥-金字塔分区的高阶复合有限元精确序列

获取原文
获取原文并翻译 | 示例

摘要

The combination of tetrahedral and hexahedral elements in a single conformal mesh requires pyramids or prisms to make the transition between triangular and quadrilateral faces. This paper presents high order exact sequences of finite element approximations in H-1(Omega), H(curl, Omega), H(div, Omega), and L-2(Omega) based on such kind of three dimensional mesh configurations. The approach is to consider composite polynomial approximations based on local partitions of the pyramids into two or four tetrahedra. The traces associated with triangular faces of these tetrahedral elements are constrained to match the quadrilateral shape functions on the quadrilateral face of the pyramid, in order to maintain conformity with shared neighboring hexahedron, or prism. Two classes of composite exact sequences are constructed, one using classic Nedelec spaces of first kind, and a second one formed by enriching these spaces with properly chosen higher order functions with vanishing traces. Projection-based interpolants satisfying the commuting diagram property are presented in a general form for each type of element. The interpolants are expressed as the sum of linearly independent contributions associated with vertices, edges, faces, and volume, according to the kind of traces appropriate to the space under consideration. Furthermore, we study applications to the mixed formulation of Darcy's problems based on compatible pairs of approximations in {H(div, Omega), L-2(Omega)} for such tetrahedral-hexahedral-prismatic-pyramidal meshes. An error analysis is outlined, showing same (optimal) orders of approximation in terms of the mesh size as one would obtain using purely hexahedral or purely tetrahedral partitions. Enhanced accuracy for potential and flux divergence variables is obtained when enriched space configurations are applied. The predicted convergence orders are verified for some test problems. (C) 2019 Elsevier B.V. All rights reserved.
机译:四面体和六面体元素在单个共形网格中的组合需要金字塔或棱柱形以在三角形和四边形面之间进行过渡。本文基于这种三维网格结构,提出了H-1(Omega),H(curl,Omega),H(div,Omega)和L-2(Omega)中有限元逼近的高阶精确序列。该方法是考虑基于金字塔分成两个或四个四面体的局部划分的复合多项式逼近。与这些四面体元素的三角形面关联的迹线被约束为与金字塔四边形面上的四边形形状函数匹配,以保持与共享的相邻六面体或棱柱的一致性。构造了两类复合精确序列,一种使用第一种经典的Nedelec空间,第二种通过用消失的迹线适当选择的高阶函数丰富这些空间而形成。满足通勤图属性的基于投影的插值以通用形式表示每种元素的类型。根据适合于所考虑空间的迹线类型,将内插值表示为与顶点,边缘,面和体积相关的线性独立贡献的总和。此外,我们研究了基于{H(div,Omega),L-2(Omega)}的近似对的相容对达西问题的混合公式的应用,例如四面体-六面体-棱柱形-金字塔形网格。概述了一个误差分析,显示了与网格大小(使用纯六面体或纯四面体分区所获得的网格)近似的(最佳)近似阶数。当应用丰富的空间配置时,可以提高势和通量散度变量的精度。针对某些测试问题验证了预测的收敛阶数。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号