首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A predictive framework to elucidate venous stenosis: CFD & shape optimization
【24h】

A predictive framework to elucidate venous stenosis: CFD & shape optimization

机译:阐明静脉狭窄的预测框架:CFD和形状优化

获取原文
获取原文并翻译 | 示例

摘要

The surgical creation of vascular accesses for renal failure patients provides an abnormally high flow rate conduit in the patient's upper arm vasculature that facilitates the hemodialysis treatment. These vascular accesses, however, are very often associated with complications that lead to access failure and thrombotic incidents, mainly due to excessive neointimal hyperplasia (NH) and subsequently stenosis. Development of a framework to monitor and predict the evolution of the venous system post access creation can greatly contribute to maintaining access patency. Computational fluid dynamics (CFD) has been exploited to inspect the non-homeostatic wall shear stress (WSS) distribution that is speculated to trigger NH in the patient cohort under investigation. Thereafter, CFD in liaison with a gradient-free shape optimization method has been employed to analyze the deformation modes of the venous system enduring non-physiological hemodynamics. It is observed that the optimally evolved shapes and their corresponding hemodynamics strive to restore the homeostatic state of the venous system to a normal, pre-surgery condition. It is concluded that a CFD-shape optimization coupling that seeks to regulate the WSS back to a well-defined physiological WSS target range can accurately predict the mode of patient-specific access failure. (C) 2017 Elsevier B.V. All rights reserved.
机译:肾衰竭患者的血管通路的外科手术创造在患者的上臂脉管系统中提供了异常高流速的导管,有助于血液透析治疗。然而,这些血管通路常常与导致通路失败和血栓形成事件的并发症相关,这主要是由于过度的内膜增生(NH)和随后的狭窄所致。开发用于监视和预测访问后创建的静脉系统的演变的框架可以极大地有助于维持访问通畅。计算流体动力学(CFD)已被用于检查非稳态壁切应力(WSS)分布,该分布被认为可触发正在研究的患者队列中的NH。此后,CFD采用无梯度形状优化方法进行联系,以分析承受非生理性血液动力学的静脉系统的变形模式。可以观察到,最佳演化的形状及其相应的血液动力学力图将静脉系统的稳态状态恢复到正常的手术前状态。结论是,试图将WSS调节回明确定义的生理WSS目标范围的CFD形状优化耦合可以准确地预测患者特定访问失败的模式。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号