首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A posteriori error estimation for the steady Navier-Stokes equations in random domains
【24h】

A posteriori error estimation for the steady Navier-Stokes equations in random domains

机译:随机域中稳定Navier-Stokes方程的后验误差估计

获取原文
获取原文并翻译 | 示例

摘要

We consider finite element error approximations of the steady incompressible Navier-Stokes equations defined on a randomly perturbed domain, the perturbation being small. Introducing a random mapping, these equations are transformed into PDEs on a fixed reference domain with random coefficients. Under suitable assumptions on the random mapping and the input data, in particular the so-called small data assumption, we prove the well-posedness of the problem. We assume then that the mapping depends affinely on L independent random variables and adopt a perturbation approach expanding the solution with respect to a small parameter a that controls the amount of randomness in the problem. We perform an a posteriori error analysis for the first order approximation error, namely the error between the exact (random) solution and the finite element approximation of the first term in the expansion with respect to a. Numerical results are given to illustrate the theoretical results and the effectiveness of the error estimators. (C) 2016 Elsevier B.V. All rights reserved.
机译:我们考虑在随机扰动域上定义的稳态不可压缩Navier-Stokes方程的有限元误差近似值,扰动很小。通过引入随机映射,这些方程式在具有随机系数的固定参考域上被转换为PDE。在关于随机映射和输入数据的适当假设下,尤其是所谓的小数据假设下,我们证明了问题的适定性。然后,我们假定映射仿射依赖于L个独立的随机变量,并采用摄动方法相对于控制问题中随机性量的小参数a扩展解。我们对一阶逼近误差(即精确的(随机)解与展开中相对于a的第一项的有限元逼近之间的误差)执行后验误差分析。数值结果说明了理论结果和误差估计器的有效性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号