首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Stochastic time-optimal path-planning in uncertain, strong, and dynamic flows
【24h】

Stochastic time-optimal path-planning in uncertain, strong, and dynamic flows

机译:不确定,强劲和动态流动中的随机时间最优路径规划

获取原文
获取原文并翻译 | 示例

摘要

Accounting for uncertainty in optimal path planning is essential for many applications. We present and apply stochastic level-set partial differential equations that govern the stochastic time-optimal reachability fronts and time-optimal paths for vehicles navigating in uncertain, strong, and dynamic flow fields. To solve these equations efficiently, we obtain and employ their dynamically orthogonal reduced-order projections, maintaining accuracy while achieving several orders of magnitude in computational speed-up when compared to classic Monte Carlo methods. We utilize the new equations to complete stochastic reachability and time-optimal path planning in three test cases: (i) a canonical stochastic steady-front with uncertain flow strength, (ii) a stochastic barotropic quasi-geostrophic double-gyre circulation, and (iii) a stochastic flow past a circular island. For all the three test cases, we analyze the results with a focus on studying the effect of flow uncertainty on the reachability fronts and time-optimal paths, and their probabilistic properties. With the first test case, we demonstrate the approach and verify the accuracy of our solutions by comparing them with the Monte Carlo solutions. With the second, we show that different flow field realizations can result in paths with high spatial dissimilarity but with similar arrival times. With the third, we provide an example where time-optimal path variability can be very high and sensitive to uncertainty in eddy shedding direction downstream of the island. (C) 2018 Elsevier B.V. All rights reserved.
机译:在许多应用中,考虑最佳路径规划中的不确定性至关重要。我们提出并应用随机的水平集偏微分方程,这些方程控制车辆在不确定,强大和动态流场中行驶的随机时间最优可达性前沿和时间最优路径。为了有效地求解这些方程,我们获得并采用了它们的动态正交降阶投影,与经典的蒙特卡洛方法相比,在保持精度的同时,计算速度提高了几个数量级。我们在三个测试案例中利用新的方程式完成随机可达性和时间最优路径规划:(i)具有不确定流量强度的规范随机稳态前沿,(ii)随机正压准地转双旋流环流,和( iii)随机流过环形岛。对于所有三个测试用例,我们重点分析流量不确定性对可达性前沿和时间最优路径的影响以及它们的概率性质,从而分析结果。在第一个测试案例中,我们演示了该方法并通过将其与蒙特卡洛解决方案进行比较来验证我们的解决方案的准确性。在第二篇中,我们显示了不同的流场实现方式可能导致路径具有较高的空间相异性,但到达时间却相似。在第三个例子中,我们提供了一个示例,其中时间最优路径变异性可能很高,并且对岛的下游涡流脱落方向的不确定性敏感。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号