首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A stabilised mixed meshfree method for incompressible media: Application to linear elasticity and Stokes flow
【24h】

A stabilised mixed meshfree method for incompressible media: Application to linear elasticity and Stokes flow

机译:一种稳定的无网格混合无网格方法,适用于线性弹性和斯托克斯流

获取原文
获取原文并翻译 | 示例

摘要

AbstractThis paper addresses some problems of modelling incompressible media using meshfree methods with a stabilised mixed formulation. The aims of this paper are twofold: to avoid the volumetric locking that occurs at the incompressible limit; and to circumvent the inf–sup condition while approximating both displacement and pressure with the same set of nodes and shape functions. We employ a modified polynomial pressure projection stabilisation method to stabilise and filter spurious pressure modes, where the gradient is corrected as proposed by Duan et al. (2014). The gradient correction is used to counteract the lack of variational consistency when numerical integration of the rational shape functions is performed, a threat that could undermine the stabilisation effort. The resulting novel method passes the mixed patch tests, and is demonstrated to be effective and optimally accurate in linear elasticity and Stokes flow test cases.HighlightsA stabilised mixed meshfree method for incompressible media is proposed.Equal-order(u,p)pair is stabilised with polynomial pressure projection.Modified standard gradient correction is applied to quadrilateral background mesh.Proposed method is stable, converges optimally and passes the mixed patch test.New analytic solution of incompressible plane stress Timoshenko beam is derived.
机译: 摘要 本文解决了使用无网格方法和稳定的混合配方对不可压缩介质建模的一些问题。本文的目的是双重的:避免在不可压缩的极限处发生体积锁定。并在用相同的节点集和形状函数同时逼近位移和压力的同时避免inf-up条件。我们采用改进的多项式压力投影稳定方法来稳定和过滤杂散压力模式,其中的梯度已按照Duan等人的建议进行了校正。 (2014)。当执行有理形状函数的数值积分时,可以使用梯度校正来弥补变化一致性的不足,这可能会破坏稳定工作。由此产生的新方法通过了混合补丁测试,并在线性弹性和斯托克斯流量测试案例中被证明是有效且最优的。 突出显示 提出了一种用于不可压缩介质的稳定的混合无网格方法。 等序 u p 对通过多项式压力投影得以稳定。 < / ce:list-item> 修改后的标准梯度校正应用于四边形背景网格。 建议的方法稳定,收敛最佳并通过了混合补丁测试。 导出了不可压缩平面应力Timoshenko梁的新解析解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号