首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A new fifth-order alternative finite difference multi-resolution WENO scheme for solving compressible flow
【24h】

A new fifth-order alternative finite difference multi-resolution WENO scheme for solving compressible flow

机译:一种新的第五阶替代有限差分多分辨率Weno方案,用于解决可压缩流程

获取原文
获取原文并翻译 | 示例

摘要

A new fifth-order alternative finite difference multi-resolution weighted essentially non-oscillatory (WENO) scheme is designed to solve the hyperbolic conservation laws in this paper. With the application of the original finite difference multi-resolution WENO schemes (Zhu and Shu, 2018; Zhu and Shu, 2020), a series of unequal-sized central spatial stencils are adopted to perform the WENO procedures, but the difference is that the methodology adopted in this paper is directly based on the point values of the solution rather than on the flux values. The proposed new multi-resolution WENO scheme can inherit many advantages of the original high order schemes, such as the arbitrary choice of the linear weights, the maintenance of the essentially non-oscillatory property in the vicinity of strong discontinuities, the smaller L-1 and L-infinity truncation errors than that of the same order classical WENOJS schemes (Balsara et al., 2016; Jiang and Shu, 1996) in smooth regions, and better convergence properties of the residue when solving some steady-state problems. Compared with the original multi-resolution WENO schemes, the presented WENO scheme also has some advantages. Firstly, an arbitrary monotone flux can be used in this framework, while the original method is only suitable for smooth flux splitting technique. Secondly, it has smaller L-1 and L-infinity truncation errors than that of the original same order multi-resolution WENO scheme. And finally, it avoids some time-consuming intermediate processes in the original multi-resolution WENO reconstruction procedures, thus resulting in less calculation time under the same conditions. Some inviscid and viscous numerical examples are provided to verify the superior performance of the new fifth-order alternative finite difference multi-resolution WENO scheme. (C) 2021 ElsevierB.V. All rights reserved.
机译:新的第五阶替代有限差异多分辨率基本上非振荡(WENO)方案旨在解决本文的双曲守恒法。随着原始有限差异多分辨率Weno方案(朱和书,2018;朱和书,2020),采用一系列不等大小的中央空间模板来执行Weno程序,但差异是本文采用的方法基于解决方案的点值而不是在磁通值上。所提出的新多分辨率Weno方案可以继承原始高阶方案的许多优点,如线性重量的任意选择,维护基本上非振荡性的近距离不连续性,较小的L-1和L-Infinity截断误差比同一订单经典WenoJS方案(Balsara等,2016;江和舒,1996)在光滑地区,以及解决一些稳态问题时残留物的更好收敛性。与原始多分辨率Weno方案相比,所呈现的Weno方案也有一些优点。首先,在该框架中可以使用任意单调磁通量,而原始方法仅适用于平滑的磁通分裂技术。其次,它具有比原始相同订单多分辨率Weno方案更小的L-1和L-Infinity截断误差。最后,它避免了原始多分辨率Weno重建过程中一些耗时的中间过程,从而导致在相同条件下的计算时间较少。提供了一些无粘性和粘性数字示例,以验证新的第五阶替代有限差异多分辨率Weno方案的优越性。 (c)2021 elsevierb.v。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号