首页> 外文期刊>Computers & mathematics with applications >A new fifth-order finite difference well-balanced multi-resolution WENO scheme for solving shallow water equations
【24h】

A new fifth-order finite difference well-balanced multi-resolution WENO scheme for solving shallow water equations

机译:求解浅水方程的新五阶有限差分差分多分辨率Weno方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new fifth-order finite difference well-balanced multi-resolution weighted essentially non-oscillatory (WENO) scheme is designed to solve for one-dimensional and two-dimensional shallow water equations with or without source terms on structured meshes. We only use the information defined on a hierarchy of nested central spatial stencils without introducing any equivalent multi-resolution representation once again. For the shallow flow problems with smooth or discontinuous bed, we combine with the well-balanced procedure developed by Xing and Shu (2005) for balancing the flux gradients and the source terms, and then the new fifth-order well-balanced multi-resolution WENO scheme (Zhu and Shu, 2018) could satisfy the exact C-property for still stationary solutions, maintain the fifth-order accuracy in smooth regions, and keep essentially non-oscillatory property in non-smooth regions. Compared with the classical well-balanced WENO schemes (Xing and Shu, 2005), the new features of this finite difference well-balanced multi-resolution WENO scheme is its simplicity and hierarchical structure in obtaining higher-order accuracy and its linear weights could be arbitrarily chosen with one requirement that their summation is one. It is the first time that a series of unequal-sized hierarchical central spatial stencils are used in designing finite difference well-balanced WENO scheme for solving shallow water equations. This new well-balanced WENO scheme is simple to construct and can be easily implemented to arbitrary high-order accuracy and in higher dimensions. Some benchmark numerical examples are performed to illustrate the good performances of this new well-balanced WENO scheme which could get high-order accuracy, keep exact C-property, sustain good convergence property, and obtain sharp shock transitions in the whole computational field. (C) 2020 Elsevier Ltd. All rights reserved.
机译:在本文中,设计了新的第五阶有限差分良好平衡的多分辨率基本上非振荡(WENO)方案,设计用于在结构性网格上具有或没有源术语的一维和二维浅水方程。我们仅使用在嵌套中央空间模板的层次结构上定义的信息,而不再次引入任何等同的多分辨率表示。对于光滑或不连续的床的浅流量问题,我们与xing和shu(2005)开发的均衡程序相结合,用于平衡通量梯度和源术语,然后新的第五阶均衡的多分辨率Weno计划(朱和书,2018)可以满足静止稳定性解决方案的确切C型,维持平滑地区的第五顺序精度,并在非平滑地区保持基本的非振荡性质。与古典良好的Weno方案相比(邢和书,2005),这种有限差分均衡的多分辨率Weno方案的新特征是其简单和等级结构,以获得更高阶精度,其线性重量可能是任意选择的要求他们的求和是一个。这是第一次使用一系列不平等大小的等级中央空间模板用于设计用于求解浅水方程的有限差分良好平衡的Weno方案。这种新的平衡良好的Weno方案易于构造,可以轻松实现为任意的高阶精度和更高的维度。执行一些基准数值示例以说明这种新的平衡Weno方案的良好性能,这可以获得高阶精度,保持精确的C-属性,维持良好的收敛性,并在整个计算领域获得急剧冲击转换。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号