首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Data-driven nonintrusive reduced order modeling for dynamical systems with moving boundaries using Gaussian process regression
【24h】

Data-driven nonintrusive reduced order modeling for dynamical systems with moving boundaries using Gaussian process regression

机译:高斯过程回归移动边界动态系统的数据驱动的非流程减少

获取原文
获取原文并翻译 | 示例

摘要

We present a data-driven nonintrusive model order reduction method for dynamical systems with moving boundaries. The proposed method draws on the proper orthogonal decomposition, Gaussian process regression, and moving least squares interpolation. It combines several attributes that are not simultaneously satisfied in the existing model order reduction methods for dynamical systems with moving boundaries. Specifically, the method requires only snapshot data of state variables at discrete time instances and the parameters that characterize the boundaries, but not further knowledge of the full-order model and the underlying governing equations. The dynamical systems can be generally nonlinear. The movements of boundaries are not limited to prescribed or periodic motions but can be free motions. In addition, we numerically investigate the ability of the reduced order model constructed by the proposed method to forecast the full-order solutions for future times beyond the range of snapshot data. The error analysis for the proposed reduced order modeling and the criteria to determine the furthest forecast time are also provided. Through numerical experiments, we assess the accuracy and efficiency of the proposed method in several benchmark problems. The snapshot data used to construct and validate the reduced order model are from analyticalumerical solutions and experimental measurements. (C) 2020 Elsevier B.V. All rights reserved.
机译:我们为具有移动边界的动态系统提出了一种数据驱动的非典型模型顺序方法。所提出的方法借鉴了适当的正交分解,高斯过程回归和移动最小二乘性插值。它结合了具有移动边界的动态系统的现有模型顺序减少方法中不同时满足的几个属性。具体地,该方法仅在离散时间实例中仅需要状态变量的快照数据和表征边界的参数,而不是完全阶模型和底层管理方程的进一步了解。动态系统通常是非线性的。边界的运动不限于规定或周期性运动,但可以是免费的运动。此外,我们在数值上调查了所提出的方法所构成的减少阶模型的能力,以预测超出快照数据范围的未来时间的全阶解决方案。还提供了所提出的阶数建模的误差分析以及确定最远预测时间的标准。通过数值实验,我们评估了在几个基准问题中提出的方法的准确性和效率。用于构造和验证减少订单模型的快照数据来自分析/数字解决方案和实验测量。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号