...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Data-driven surrogates for high dimensional models using Gaussian process regression on the Grassmann manifold
【24h】

Data-driven surrogates for high dimensional models using Gaussian process regression on the Grassmann manifold

机译:利用GARSMAN歧管的高斯过程回归的高维模型数据驱动代理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper introduces a surrogate modeling scheme based on Grassmannian manifold learning to be used for cost-efficient predictions of high-dimensional stochastic systems. The method exploits subspace-structured features of each solution by projecting it onto a Grassmann manifold. This point-wise linear dimensionality reduction harnesses the structural information to assess the similarity between solutions at different points in the input parameter space. The method utilizes a solution clustering approach in order to identify regions of the parameter space over which solutions are sufficiently similarly such that they can be interpolated on the Grassmannian. In this clustering, the reduced-order solutions are partitioned into disjoint clusters on the Grassmann manifold using the eigen-structure of properly defined Grassmannian kernels and, the Karcher mean of each cluster is estimated. Then, the points in each cluster are projected onto the tangent space with origin at the corresponding Karcher mean using the exponential mapping. For each cluster, a Gaussian process regression model is trained that maps the input parameters of the system to the reduced solution points of the corresponding cluster projected onto the tangent space. Using this Gaussian process model, the full-field solution can be efficiently predicted at any new point in the parameter space. In certain cases, the solution clusters will span disjoint regions of the parameter space. In such cases, for each of the solution clusters we utilize a second, density-based spatial clustering to group their corresponding input parameter points in the Euclidean space. The proposed method is applied to two numerical examples. The first is a nonlinear stochastic ordinary differential equation with uncertain initial conditions where the surrogate is used to predict the time history solution. The second involves modeling of plastic deformation in a model amorphous solid using the Shear Transformation Zone theory of plasticity, where the proposed surrogate is used to predict the full strain field of a material specimen under large shear strains. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文介绍了一种基于基于基于基于基于Gransmannian歧管学习的代理建模方案,用于高维随机系统的成本效益预测。该方法通过将其突出到Grassmann流形来利用每个解决方案的子空间结构特征。该点明智的线性维度减少利用结构信息来评估输入参数空间中不同点的解决方案之间的相似性。该方法利用解决方案聚类方法,以识别哪个解决方案的参数空间的区域足够类似地,使得它们可以在基础上插入。在该聚类中,使用适当定义的基地内核的特征结构,估计每个群集的eIGEN结构,将阶阶解决方案划分为在基层歧管上划分为不相交的簇。然后,每个群集中的点在使用指数映射的相应Karcher均值上投射到具有原点的切线空间。对于每个群集,培训高斯进程回归模型,将系统的输入参数映射到投影到切线空间上的相应集群的减少的解决方案点。使用此高斯过程模型,可以在参数空间中的任何新点有效地预测全场解决方案。在某些情况下,解决方案集群将跨越参数空间的不相交区域。在这种情况下,对于每个解决方案集群,我们利用第二个密度的空间聚类来对欧几里德空间中的相应输入参数点进行分组。该方法应用于两个数值例子。首先是非线性随机常微分方程,具有不确定的初始条件,其中代理用于预测时间历史解决方案。第二种涉及使用剪切变换区域的可塑性理论建模在模型无定形固体中的塑性变形,其中提出的代理用于预测大剪切菌株下材料样本的全应变场。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号