首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Logarithmic conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation
【24h】

Logarithmic conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation

机译:VMS型稳定有限元配方近似粘弹性流动问题的对数构象重构

获取原文
获取原文并翻译 | 示例

摘要

The log-conformation reformulation, originally proposed by Fattal and Kupferman (2004), allows computing incompressible viscoelastic problems with high Weissenberg numbers which are impossible to solve with the typical three-field formulation. By following this approach, in this work we develop a new stabilized finite element formulation based on the logarithmic reformulation using the Variational Multiscale (VMS) method as stabilization technique, together with a modified log-conformation formulation. Our approach follows the term-by-term stabilization proposed by Castillo and Codina (2014) for the standard formulation, which is more effective when there are stress singularities. The formulation can be used when the relaxation parameter is set to zero, and permits a direct steady numerical resolution. The formulation is validated in the classical benchmark flow past a cylinder and in the well-known planar contraction 4:1, achieving very accurate, stable and mesh independent results for highly elastic fluids. (C) 2019 Elsevier B.V. All rights reserved.
机译:最初由Fattal和Kupferman(2004)提出的日志构象重构,允许计算使用典型的三场配方的高卫生伯格数来计算不可压缩的粘弹性问题,这是不可能解决的。通过遵循这种方法,在这项工作中,我们基于使用变分式多尺度(VMS)方法作为稳定技术的对数重构的新稳定有限元制构,以及改进的日志构象制定。我们的方法遵循Castillo和Codina(2014)所提出的逐步稳定,用于标准制剂,当存在应力奇点时更有效。当弛豫参数设定为零时,可以使用制剂,并允许直接稳定的数值分辨率。该配方在经典的基准中验证过圆筒和众所周知的平面收缩4:1,实现非常精确,稳定和网眼的高度弹性流体。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号