首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Logarithmic conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation
【24h】

Logarithmic conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation

机译:用VMS型稳定有限元公式近似计算的粘弹性流动问题的对数构象

获取原文
获取原文并翻译 | 示例

摘要

The log-conformation reformulation, originally proposed by Fattal and Kupferman (2004), allows computing incompressible viscoelastic problems with high Weissenberg numbers which are impossible to solve with the typical three-field formulation. By following this approach, in this work we develop a new stabilized finite element formulation based on the logarithmic reformulation using the Variational Multiscale (VMS) method as stabilization technique, together with a modified log-conformation formulation. Our approach follows the term-by-term stabilization proposed by Castillo and Codina (2014) for the standard formulation, which is more effective when there are stress singularities. The formulation can be used when the relaxation parameter is set to zero, and permits a direct steady numerical resolution. The formulation is validated in the classical benchmark flow past a cylinder and in the well-known planar contraction 4:1, achieving very accurate, stable and mesh independent results for highly elastic fluids. (C) 2019 Elsevier B.V. All rights reserved.
机译:最初由Fattal和Kupferman(2004)提出的对数构象公式化允许计算具有高Weissenberg数的不可压缩粘弹性问题,而这是用典型的三场公式无法解决的。通过遵循这种方法,在这项工作中,我们基于对数重构,使用变分多尺度(VMS)方法作为稳定技术,开发了一种新的稳定的有限元公式,以及改进的对数构象公式。我们的方法遵循Castillo和Codina(2014)针对标准配方提出的逐项稳定,当存在应力奇异点时,这种方法会更有效。当松弛参数设置为零时可以使用该公式,并且可以直接获得稳定的数值分辨率。该配方已通过流经圆柱体的经典基准流量和众所周知的平面收缩率4:1进行了验证,从而为高弹性流体提供了非常准确,稳定和独立于网格的结果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号