首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A novel computational multiscale approach to model thermochemical coupled problems in heterogeneous solids: Application to the determination of the 'state of cure' in filled elastomers
【24h】

A novel computational multiscale approach to model thermochemical coupled problems in heterogeneous solids: Application to the determination of the 'state of cure' in filled elastomers

机译:一种新的计算多尺度方法来模拟异质固体的热化学耦合问题:应用于填充弹性体中“固化状态”的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a computational homogenization framework to model coupled transient heat conduction with heat generation and chemical kinetics in solids. The proposed method considers that both macro and microscales are under transient heat conduction, being the chemical kinetics (which gives rise to internal heat generation source in the heat conduction problem) defined either in some of the constituents of the microscale or even in the whole microscale. The numerical solution is based on a nested solution strategy, in which the finite element method is used for solving both the macro and the microscale problems, configuring a FE2 scheme. By solving the coupled problem of transient heat conduction with internal heat generation and chemical kinetics defined in a finite representative volume element, we extract the effective thermal properties and chemical kinetics contribution of the composite and employ them to solve the transient macroscale heat conduction problem (also with internal heat generation). This novel numerical framework is employed in the prediction of the State Of Cure (SOC) in filled elastomers. Numerical solutions of some in-plane heat conduction problems are presented in order to assess the proposed numerical strategy, showing that the multiscale model developed is capable of numerically determining transient non-homogeneous maps of the SOC at the microscale. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,我们介绍了一种计算均质化框架,以模拟耦合瞬态热传导与固体中的发热和化学动力学。所提出的方法认为,两种宏观和微观都是瞬态导热,是在微观尺寸的一些成分中或甚至在整个Microscale中定义的化学动力学(导致导热问题中的内部发热源) 。数值解决方案基于嵌套解决方案策略,其中有限元方法用于解决宏和微观问题,配置FE2方案。通过解决有限代表性体积元素内部的内部发热和化学动力学的瞬态导热耦合问题,我们提取了复合材料的有效热性能和化学动力学贡献,并采用它们来解决瞬态宏观导热问题(也内部发热)。该新型数值框架用于预测填充弹性体中的固化状态(SoC)。呈现了一些面内导热问题的数值解,以评估所提出的数值策略,表明所开发的多尺度模型能够在微尺度下数值确定SOC的瞬态非均匀图谱。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号