首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A novel computational multiscale approach to model thermochemical coupled problems in heterogeneous solids: Application to the determination of the 'state of cure' in filled elastomers
【24h】

A novel computational multiscale approach to model thermochemical coupled problems in heterogeneous solids: Application to the determination of the 'state of cure' in filled elastomers

机译:一种用于多相固体中热化学耦合问题的新型计算多尺度方法:在确定填充弹性体中“固化状态”中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a computational homogenization framework to model coupled transient heat conduction with heat generation and chemical kinetics in solids. The proposed method considers that both macro and microscales are under transient heat conduction, being the chemical kinetics (which gives rise to internal heat generation source in the heat conduction problem) defined either in some of the constituents of the microscale or even in the whole microscale. The numerical solution is based on a nested solution strategy, in which the finite element method is used for solving both the macro and the microscale problems, configuring a FE2 scheme. By solving the coupled problem of transient heat conduction with internal heat generation and chemical kinetics defined in a finite representative volume element, we extract the effective thermal properties and chemical kinetics contribution of the composite and employ them to solve the transient macroscale heat conduction problem (also with internal heat generation). This novel numerical framework is employed in the prediction of the State Of Cure (SOC) in filled elastomers. Numerical solutions of some in-plane heat conduction problems are presented in order to assess the proposed numerical strategy, showing that the multiscale model developed is capable of numerically determining transient non-homogeneous maps of the SOC at the microscale. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一个计算均质化框架,以建模耦合瞬态热传导与固体中的生热和化学动力学。所提出的方法认为宏观尺度和微观尺度都处于瞬态热传导下,是在微观尺度的某些组成部分甚至整个微观尺度中定义的化学动力学(导致热传导问题的内部生热源)。 。数值解决方案基于嵌套解决方案策略,其中有限元方法用于解决宏观和微观问题,并配置了FE2方案。通过解决瞬态热传导与内部热生成和化学动力学的耦合问题,该问题在有限的代表性体积元素中定义,我们提取了复合材料的有效热学性质和化学动力学贡献,并将其用于解决瞬态宏观热传导问题(也产生内部热量)。这种新颖的数值框架可用于填充弹性体的固化状态(SOC)预测。为了评估所提出的数值策略,提出了一些平面内导热问题的数值解决方案,表明所开发的多尺度模型能够以数值确定微尺度下SOC的瞬态非均质图。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号