首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An a priori error estimate for a temporally discontinuous Galerkin space-time finite element method for linear elasto- and visco-dynamics
【24h】

An a priori error estimate for a temporally discontinuous Galerkin space-time finite element method for linear elasto- and visco-dynamics

机译:用于线性弹性和Visco-Dynamics的时间上不连续的Galerkin时分有限元方法的先验误差估计

获取原文
获取原文并翻译 | 示例

摘要

We extend the formulation and a priori error analysis given by Claes Johnson (1993) from the acoustic wave equation to a Voigt and Maxwell-Zener viscodynamic system incorporating Rayleigh damping. The elastic term in the Rayleigh damping introduces a multiplicative T-1/2 growth in the constant but otherwise the error bound is consistent with that obtained by Johnson, with a constant that grows a priori with T-1/2 and also with norms of the solution. Gronwall's inequality is not used and so we can expect that this bound is of high enough quality to afford confidence in long-time integration. The viscoelasticity is modelled by internal variables that evolve according to ordinary differential equations and so the system shares similarities with dispersive Debye and Drude metamaterial models currently being studied in electromagnetism, as well as to acoustic metamaterial systems. This appears to be the first time an a priori error analysis has been given for DG-in-time treatment of dispersive problems of this type. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们将Claes Johnson(1993)给出的制定和先验误差分析从声波方程到包含Rayleigh Damping的voigt和Maxwell-zener电动动力学系统。瑞利阻尼中的弹性术语在恒定中引入了乘法T-1/2的生长,但否则误差绑定与Johnson获得的误差一致,常数与T-1/2一起增长并具有T-1/2的恒定和规范解决方案。 Gronwall的不平等不等,因此我们可以期待这一界限足够高,以提供对长期整合的信心。粘弹性由内部变量建模,内部变量根据常规方程而发展,因此系统与当前在电磁解中研究的分散方式和博德超材料模型以及声学的超材料系统共享相似性。这似乎是第一次获得了这种类型的分散问题的DG-The-Time治疗的先验误差分析。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号