首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An a priori error estimate for a temporally discontinuous Galerkin space-time finite element method for linear elasto- and visco-dynamics
【24h】

An a priori error estimate for a temporally discontinuous Galerkin space-time finite element method for linear elasto- and visco-dynamics

机译:线性弹性和粘滞动力学的时间不连续Galerkin时空有限元方法的先验误差估计

获取原文
获取原文并翻译 | 示例

摘要

We extend the formulation and a priori error analysis given by Claes Johnson (1993) from the acoustic wave equation to a Voigt and Maxwell-Zener viscodynamic system incorporating Rayleigh damping. The elastic term in the Rayleigh damping introduces a multiplicative T-1/2 growth in the constant but otherwise the error bound is consistent with that obtained by Johnson, with a constant that grows a priori with T-1/2 and also with norms of the solution. Gronwall's inequality is not used and so we can expect that this bound is of high enough quality to afford confidence in long-time integration. The viscoelasticity is modelled by internal variables that evolve according to ordinary differential equations and so the system shares similarities with dispersive Debye and Drude metamaterial models currently being studied in electromagnetism, as well as to acoustic metamaterial systems. This appears to be the first time an a priori error analysis has been given for DG-in-time treatment of dispersive problems of this type. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们将克莱斯·约翰逊(Claes Johnson)(1993)给出的公式和先验误差分析从声波方程扩展到结合了瑞利阻尼的Voigt和Maxwell-Zener粘滞动力学系统。 Rayleigh阻尼中的弹性项会在常数中引入T-1 / 2的乘积增长,但否则,误差范围与Johnson所获得的误差范围是一致的,该常数的先验会随T-1 / 2以及标准解决方案。不使用Gronwall的不等式,因此我们可以期望此边界的质量足够高,从而可以保证长期集成。粘弹性是由根据常微分方程演化的内部变量建模的,因此该系统与电磁学中目前正在研究的色散Debye和Drude超材料模型以及声学超材料系统具有相似之处。这似乎是首次对此类分散问题的DG进行及时的先验误差分析。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号