首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Critical time-step for central difference integration schemes in discrete methods: Translational and rotational degrees of freedom
【24h】

Critical time-step for central difference integration schemes in discrete methods: Translational and rotational degrees of freedom

机译:离散方法中央差异集成方案的关键时间步骤:翻译和旋转自由度

获取原文
获取原文并翻译 | 示例

摘要

The explicit central-difference time integration scheme is widely used in discrete methods. However, restrictions on the size of the time step apply. We revisit the problem of a network of particles with translational and rotational degrees of freedom. We apply a discrete Fourier transform to the equations of motion. By studying the eigenvalues of the amplification matrix, we derived a closed form, sharp stability limit that applies to any network. The time-step limit is compared with previous work (Otsubo et al. 2017 and O'Sullivan et al. 2004) for common network configurations. Numerical simulation is used for a certain class of networks in two-dimensional and three-dimensional spaces, and good agreement is observed between the analytical critical time-step and the numerical solutions. (C) 2019 Elsevier B.V. All rights reserved.
机译:显式中央差分时间集成方案广泛用于离散方法。但是,对时间步长大小的限制适用。我们重新审视具有翻译和旋转自由度的粒子网络的问题。我们将离散的傅里叶变换应用于运动方程。通过研究扩增矩阵的特征值,我们派生了适用于任何网络的封闭形式,尖锐的稳定性极限。将时间步长与以前的工作进行比较(Otsubo等,2017和O'Sullivan等,2004)用于常见网络配置。数值模拟用于二维和三维空间中的某类网络,并且在分析临界时间步骤和数值解决方案之间观察到良好的一致性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号