首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Propagating uncertainties in large-scale hemodynamics models via network uncertainty quantification and reduced-order modeling
【24h】

Propagating uncertainties in large-scale hemodynamics models via network uncertainty quantification and reduced-order modeling

机译:通过网络不确定性量化和降阶建模在大规模血液动力学模型中传播不确定性

获取原文
获取原文并翻译 | 示例

摘要

Numerical simulations of the cardiovascular system are affected by uncertainties arising from a substantial lack of data related to the boundary conditions and the physical parameters of the mathematical models. Quantifying the impact of this uncertainty on the numerical results along the circulatory network is challenged by the complexity of both the morphology of the domain and the local dynamics. In this paper, we propose to integrate (i) the Transverse Enriched Pipe Element Methods (TEPEM) as a reduced-order model for effectively computing the 3D local hemodynamics; and (ii) a combination of uncertainty quantification via Polynomial Chaos Expansion and classical relaxation methods-called network uncertainty quantification (NetUQ) - for effectively propagating random variables that encode uncertainties throughout the networks. The results demonstrate the computational effectiveness of computing the propagation of uncertainties in networks with nontrivial topology, including portions of the cerebral and the coronary systems. (C) 2019 Elsevier B.V. All rights reserved.
机译:心血管系统的数值模拟会受到不确定性的影响,不确定性是由于缺乏与边界条件和数学模型的物理参数有关的数据而引起的。域的形态和局部动力学的复杂性都对量化这种不确定性对沿循环网络的数值结果的影响提出了挑战。在本文中,我们建议将(i)横向富管元素方法(TEPEM)集成为降阶模型,以有效地计算3D局部血液动力学; (ii)通过多项式混沌扩展和经典松弛方法(称为网络不确定性量化(NetUQ))相结合的不确定性量化,可以有效地传播对整个网络中的不确定性进行编码的随机变量。结果证明了计算具有非平凡拓扑结构的网络(包括部分大脑和冠状动脉系统)中不确定性传播的计算效率。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号