首页> 外文期刊>Computers & mathematics with applications >Non-intrusive reduced-order modeling for uncertainty quantification of space-time-dependent parameterized problems
【24h】

Non-intrusive reduced-order modeling for uncertainty quantification of space-time-dependent parameterized problems

机译:非侵入性降低模型,用于不确定量的空间依赖参数化问题

获取原文
获取原文并翻译 | 示例

摘要

We propose a non-intrusive reduced-order modeling method for spacetime-dependent parameterized problems in the context of uncertainty quantification. In the offline stage, proper orthogonal decomposition (POD) is used to extract the spatial modes based on a set of high-fidelity time-parameter-dependent snapshots and then to extract the temporal modes of the projection coefficients of the spatial modes. Finally, parameter-dependent combination coefficients are approximated using polynomial chaos expansions (PCEs). Cubic spline interpolation is used to evaluate the temporal modes at any other given time. In the online stage, a fast evaluation is provided at any given time and parameter by simply estimating the values of the polynomials and temporal modes. To validate the numerical performance of the proposed method, three time-dependent parameterized problems are tested: a one-dimensional (1-D) forced Burger's equation with a random force term, a 1-D diffusion-reaction equation with a random field force term, and a two-dimensional incompressible fluid flow over a cylinder with a random inflow boundary condition. The results indicate that the proposed method is able to approximate the full-order model very inexpensively with a reasonable loss of accuracy for problems with uncorrelated or correlated input parameters. Furthermore, the proposed method is effective in estimating low-order moments, indicating that it has great potential for use in uncertainty quantification analysis of spacetime-dependent problems.
机译:在不确定量化的背景下,我们提出了一种非侵入性的降低的阶数建模方法,用于在不确定量化的背景下进行空间依赖性参数化问题。在离线阶段,适当的正交分解(POD)用于基于一组高保真时间参数相关的快照提取空间模式,然后提取空间模式的投影系数的时间模式。最后,使用多项式混沌扩展(PCE)近似参数相关的组合系数。立方样条插值用于评估任何其他给定时间的时间模式。在在线阶段,通过简单地估计多项式和时间模式的值,在任何给定的时间和参数提供快速评估。为了验证所提出的方法的数值,测试了三个时间依赖的参数化问题:一维(1-D)强制汉堡具有随机力术语的一维,具有随机场力的1-D扩散反应方程术语,以及具有随机流入边界条件的圆柱体上的二维不可压缩的流体。结果表明,该方法能够估计全阶模型非常廉价的模型,以合理的准确性损失对具有不相关或相关的输入参数的问题。此外,所提出的方法在估计低阶矩有效,表明它具有很大的使用潜力,用于不确定地分析时空依赖性问题。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号