首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites
【24h】

An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites

机译:非线性随机复合材料随机均质化的逆微机械分析

获取原文
获取原文并翻译 | 示例

摘要

An inverse Mean-Field Homogenization (MFH) process is developed to improve the computational efficiency of non-linear stochastic multiscale analyzes by relying on a micro-mechanics model. First full-field simulations of composite Stochastic Volume Element (SVE) realizations are performed to characterize the homogenized stochastic behavior. The uncertainties observed in the non-linear homogenized response, which result from the uncertainties of their micro-structures, are then translated to an incremental-secant MFH formulation by defining the MFH input parameters as random effective properties. These effective input parameters, which correspond to the micro-structure geometrical information and to the material phases model parameters, are identified by conducting an inverse analysis from the full-field homogenized responses. Compared to the direct finite element analyzes on SVEs, the resulting stochastic MFH process reduces not only the computational cost, but also the order of uncertain parameters in the composite micro-structures, leading to a stochastic Mean-Field Reduced Order Model (MF-ROM). A data-driven stochastic model is then built in order to generate the random effective properties under the form of a random field used as entry for the stochastic MF-ROM embedded in a Stochastic Finite Element Method (SEEM). The two cases of elastic Unidirectional (UD) fibers embedded in an elasto-plastic matrix and of elastic UD fibers embedded in a damage-enhanced elasto-plastic matrix are successively considered. In order to illustrate the capabilities of the method, the stochastic response of a ply is studied under transverse loading condition. (C) 2019 Elsevier B.V. All rights reserved.
机译:逆平均场均化(MFH)过程被开发出来,以依靠微力学模型来提高非线性随机多尺度分析的计算效率。进行复合随机体积元素(SVE)实现的第一个全场模拟,以表征均匀化的随机行为。非线性均质化响应中观察到的不确定性(由其微观结构的不确定性引起),然后通过将MFH输入参数定义为随机有效属性,转化为增量割线MFH公式。这些有效的输入参数,分别对应于微结构的几何信息和材料相模型参数,是通过对全场均质化响应进行逆分析来识别的。与基于SVE的直接有限元分析相比,所产生的随机MFH过程不仅降低了计算成本,而且降低了复合微结构中不确定参数的顺序,从而导致了随机均值场降阶模型(MF-ROM) )。然后建立一个数据驱动的随机模型,以便以随机字段的形式生成随机有效属性,该字段用作嵌入随机有限元方法(SEEM)中的随机MF-ROM的条目。依次考虑了包埋在弹塑性基体中的弹性单向(UD)纤维和包埋在破坏增强的弹塑性基体中的弹性UD纤维的两种情况。为了说明该方法的功能,研究了在横向载荷条件下帘布层的随机响应。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号