首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Dynamic term-by-term stabilized finite element formulation using orthogonal subgrid-scales for the incompressible Navier-Stokes problem
【24h】

Dynamic term-by-term stabilized finite element formulation using orthogonal subgrid-scales for the incompressible Navier-Stokes problem

机译:使用不可压缩的Navier-Stokes问题的正交子网格尺度的动态逐项稳定有限元公式

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose and analyze the stability and the dissipative structure of a new dynamic term-by-term stabilized finite element formulation for the Navier-Stokes problem that can be viewed as a variational multiscale (VMS) method under some assumptions. The essential point of the formulation is the time dependent nature of the subscales and, contrary to residual-based formulations, the introduction of two velocity subscale components. They represent the components of the convective and the pressure gradient terms, respectively, of the momentum equation that cannot be captured by the finite element mesh. A key idea of the proposed method is that the convective subscale is close to a solenoidal field and the pressure gradient subscale is close to a potential field. The method ensures stability in anisotropic space-time discretizations, which is proved using numerical analysis for a linearized problem and demonstrated in classical numerical tests. The work includes a detailed description of the proposed formulation and several numerical examples that serve to justify our claims. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出并分析了用于Navier-Stokes问题的新的动态逐项稳定有限元公式的稳定性和耗散结构,该公式在某些假设下可以看作是变分多尺度(VMS)方法。公式的要点是子量表的时间依赖性,并且与基于残差的公式相反,引入了两个速度子量表分量。它们分别表示动量方程的对流和压力梯度项的组成部分,有限元网格无法捕获它们。提出的方法的关键思想是,对流子刻度接近电磁场,压力梯度子刻度接近势场。该方法确保了各向异性时空离散化的稳定性,这已通过对线性化问题的数值分析得到证明,并在经典数值测试中得到了证明。这项工作包括对拟议配方的详细描述和几个可证明我们的权利要求的数字示例。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号