首页> 外文期刊>Computers & mathematics with applications >Numerical verification of a non-residual orthogonal term-by-term stabilized finite element formulation for incompressible convective flow problems
【24h】

Numerical verification of a non-residual orthogonal term-by-term stabilized finite element formulation for incompressible convective flow problems

机译:非残留正交术语稳定有限元制剂对不可压缩的对流流动问题的数值验证

获取原文
获取原文并翻译 | 示例

摘要

The modeling of turbulent flows is relevant in many engineering applications and, is an active field of research on numerical methods. Convergence and stability of proposed formulations are crucial to predict transitional flows from laminar to turbulent flows. In this work, a recently developed stabilized finite element formulation is used as a powerful tool to describe such kind of problems. The essential point of the formulation is the time dependent nature of the subscales and, contrary to residual based formulations, the introduction of two velocity subscale components. The theoretical rate of convergence of the method is verified numerically using linear and quadratic equalorder finite element discretizations. To this end, a standard convergence test of L2-norm is presented where the computed solutions are compared when manufactured solutions are imposed at Gauss-point level. Moreover, the Hopf bifurcation is studied for two wellknown benchmark problems: flow past a cylinder and the three-dimensional lid-driven cavity flow. For the flow past a cylinder case, the Hopf bifurcation is verified using dynamic subscales and is assessed so that they do not disturb the solution. In particular, a dominant convective problem (Re = 4000) is solved using both the quasistatic and dynamic versions of the method, evaluating the performance of each one in the quality of the solution and in the CPU time needed to obtain a converged solution. For the 3D lid-driven cavity flow problem, the Hopf bifurcation is determined using two different boundary conditions, analyzing their effect on the dynamics of the problem and on the thickness and shape of the boundary layer. The final test case is the turbulent 3D lid-driven cavity problem (Re = 12000), where velocity profiles are compared with experimental, LES and DNS reference solutions. Additionally, pressure and velocity spectra are shown at certain representative points of the domain, as well as phase diagrams, correlation function graphs, the Poincare map, and the Lyapunov exponent, typical mathematical tools used in dynamical system analysis. From the results, the method is robust and accurate for all the numerical tests both in viscous dominant problems as in dominant convective ones. (C) 2020 Elsevier Ltd. All rights reserved.
机译:湍流流动的建模在许多工程应用中是相关的,并且是关于数值方法的主要研究领域。所提出的制剂的收敛性和稳定性至关重要,以预测来自层流到湍流流动的过渡流程。在这项工作中,最近开发的稳定的有限元配方用作描述这种问题的强大工具。制剂的基本点是分量器的时间依赖性,与残留的配方相反,引入了两个速度亚速度组分。使用线性和二次等式有限元离散化来数值验证该方法的理论速率。为此,介绍了L2-NOM的标准收敛试验,其中当在高斯点水平施加制造解决方案时,将计算的解决方案进行比较。此外,研究了HopF分叉的两种井指基准问题:流过圆柱和三维盖子驱动腔流量。对于流过气缸壳的流动,使用动态分量验证HopF分叉,并进行评估,以便它们不会打扰解决方案。特别地,使用该方法的Quasistatic和动态版本来解决主导的对流问题(RE = 4000),评估在解决方案的质量和获得融合解决方案所需的CPU时间中的每一个的性能。对于3D盖子驱动腔流量问题,使用两个不同的边界条件确定HOPF分叉,分析它们对问题的动态和边界层的厚度和形状的影响。最终的测试案例是湍流3D盖驱动腔问题(RE = 12000),其中速度分布与实验,LES和DNS参考解决方案进行比较。另外,压力和速度光谱显示在域的某些代表性点,以及相位图,相关函数图,庞纳罗地图和动态系统分析中使用的典型数学工具。从结果中,该方法对于粘性主导问题中的所有数值测试是鲁棒性,准确的粘性主导问题中的所有数值测试。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号