首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods
【24h】

Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods

机译:有限元方法中正交子尺度对不可压缩性和对流的稳定作用

获取原文
获取原文并翻译 | 示例

摘要

Two apparently different forms of dealing with the numerical instability due to the incompressibility constraint of the Stokes problem are analyzed in this paper. The first of them is the stabilization through the pressure gradient projection, which consists of adding a certain least-squares form of the difference between the pressure gradient and its L~2 projection onto the discrete velocity space in the variational equations of the problem. The second is a sub-grid scale method, whose stabilization effect is very similar to that of the Galerkin/least-squares (GLS) method for the Stokes problem.
机译:由于斯托克斯问题的不可压缩性约束,本文分析了两种明显不同的形式处理数值不稳定性。第一个是通过压力梯度投影的稳定化,它包括在问题的变分方程中将压力梯度与其L〜2投影之间的差值的某个最小二乘形式加到离散速度空间上。第二种是子网格规模方法,其稳定效果与Stokes问题的Galerkin /最小二乘(GLS)方法非常相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号