首页> 外文期刊>Computer Communications >Egocentric online social networks: Analysis of key features and prediction of tie strength in Facebook
【24h】

Egocentric online social networks: Analysis of key features and prediction of tie strength in Facebook

机译:以自我为中心的在线社交网络:Facebook的主要功能分析和领带强度预测

获取原文
获取原文并翻译 | 示例

摘要

The widespread use of online social networks, such as Facebook and Twitter, is generating a growing amount of accessible data concerning social relationships. The aim of this work is twofold. First, we present a detailed analysis of a real Facebook data set aimed at characterising the properties of human social relationships in online environments. We find that certain properties of online social networks appear to be similar to those found "offline" (i.e., on human social networks maintained without the use of social networking sites). Our experimental results indicate that on Facebook there is a limited number of social relationships an individual can actively maintain and this number is close to the well-known Dunbar's number (150) found in offline social networks. Second, we also present a number of linear models that predict tie strength (the key figure to quantitatively represent the importance of social relationships) from a reduced set of observable Facebook variables. Specifically, we are able to predict with good accuracy (i.e., higher than 80%) the strength of social ties by exploiting only four variables describing different aspects of users interaction on Facebook. We find that the recency of contact between individuals - used in other studies as the unique estimator of tie strength - has the highest relevance in the prediction of tie strength. Nevertheless, using it in combination with other observable quantities, such as indices about the social similarity between people, can lead to more accurate predictions.
机译:在线社交网络(如Facebook和Twitter)的广泛使用正在产生与社交关系有关的越来越多的可访问数据。这项工作的目的是双重的。首先,我们对真实的Facebook数据集进行详细分析,旨在表征在线环境中人类社会关系的特性。我们发现在线社交网络的某些属性似乎与“离线”发现的属性相似(即,在不使用社交网站的情况下维护的人类社交网络上)。我们的实验结果表明,在Facebook上,一个人可以积极维持的社交关系数量有限,该数字与离线社交网络中的知名Dunbar号码(150)接近。其次,我们还提出了许多线性模型,这些模型可以通过减少的一组可观察到的Facebook变量来预测领带强度(定量表示社会关系重要性的关键数字)。具体而言,我们仅通过利用四个变量来描述用户在Facebook上互动的不同方面,就能够以较高的准确性(即高于80%)预测社交联系的强度。我们发现,个人之间的接触新近度(在其他研究中用作联系强度的唯一估算器)在联系强度的预测中具有最高的相关性。但是,将其与其他可观察到的量(例如有关人与人之间社会相似性的指标)结合使用,可以得出更准确的预测。

著录项

  • 来源
    《Computer Communications》 |2013年第11期|1130-1144|共15页
  • 作者单位

    Institute for Informatics and Telematics, National Research Council of Italy, Via G. Moruzzi 1, 56124 Pisa, Italy;

    Centre for the Study of Complex Dynamics, University of Florence, Via S. Marta 3, 50139 Firenze, Italy;

    Institute for Informatics and Telematics, National Research Council of Italy, Via G. Moruzzi 1, 56124 Pisa, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Online social networks; Ego networks; Tie strength; Predictions;

    机译:在线社交网络;自我网络;领带强度;预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号