首页> 外文期刊>Computer Animation and Virtual Worlds >Deep supervised multimodal semantic autoencoder for cross-modal retrieval
【24h】

Deep supervised multimodal semantic autoencoder for cross-modal retrieval

机译:深度监督多模语性自动跨度用于跨模型检索

获取原文
获取原文并翻译 | 示例

摘要

Cross-modal retrieval aims to do flexible retrieval among different modals, whose main issue is how to measure the semantic similarities among multimodal data. Though many existing methods have been proposed to enable cross-modal retrieval, they rarely consider the preservation of content information among multimodal data. In this paper, we present a three-stage cross-modal retrieval method, namedMMCA-CMR. To reduce the discrepancy among multimodal data, we first attempt to embed multimodal data into a common representation space. We then combine the feature vectors with the content information into the semantic-aware feature vectors. We finally obtain the feature-aware and content-aware projections via multimodal semantic autoencoders. With semantic deep autoencoders, MMCA-CMR promotes a more reliable cross-modal retrieval by learning feature vectors from different modalities and content information simultaneously. Extensive experiments demonstrate that the proposed method is valid in cross-modal retrieval, which significantly outperforms state-of-the-art on four widely-used benchmark datasets.
机译:跨模型检索旨在在不同的模块中进行灵活检索,其主要问题是如何测量多模式数据之间的语义相似之处。尽管已经提出了许多现有方法来实现跨模型检索,但它们很少考虑多模式数据之间的内容信息。在本文中,我们介绍了一种三阶段的跨模态检索方法,NamedMMCA-CMR。为了减少多模式数据之间的差异,我们首先尝试将多模式数据嵌入到公共表示空间中。然后,我们将特征向量与内容信息组合到语义感知的特征向量中。我们终于通过多模式语义autaliCoders获取了特征感知和内容感知的预测。利用语义深度自动控制器,MMCA-CMR通过同时学习来自不同模式和内容信息的特征向量来促进更可靠的跨模型检索。广泛的实验表明,所提出的方法在跨模型检索中有效,这在四个广泛使用的基准数据集中显着优于最先进的。

著录项

  • 来源
    《Computer Animation and Virtual Worlds》 |2020年第5期|e1962.1-e1962.12|共12页
  • 作者单位

    Natl Univ Def Technol Inst Quantum Informat Coll Comp Changsha 410073 Hunan Peoples R China|Natl Univ Def Technol State Key Lab High Performance Comp Coll Comp Changsha 410073 Hunan Peoples R China;

    Natl Univ Def Technol Inst Quantum Informat Coll Comp Changsha 410073 Hunan Peoples R China|Natl Univ Def Technol State Key Lab High Performance Comp Coll Comp Changsha 410073 Hunan Peoples R China;

    Naval Aeronaut Univ Yantai Peoples R China;

    Natl Univ Def Technol Inst Quantum Informat Coll Comp Changsha 410073 Hunan Peoples R China|Natl Univ Def Technol State Key Lab High Performance Comp Coll Comp Changsha 410073 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    autoencoder; cross-modal retrieval; semantic-aware feature vectors;

    机译:AutoEncoder;跨模型检索;语义感知功能向量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号