首页> 外文期刊>Pattern recognition letters >Semantics-enhanced supervised deep autoencoder for depth image-based 3D model retrieval
【24h】

Semantics-enhanced supervised deep autoencoder for depth image-based 3D model retrieval

机译:语义增强的监督式深度自动编码器,用于基于深度图像的3D模型检索

获取原文
获取原文并翻译 | 示例

摘要

Increased accuracy and affordability of depth sensors such as Kinect has created a great depth-data source for various 3D oriented applications. Specifically, 3D model retrieval is attracting attention in the field of computer vision and pattern recognition due to its numerous applications. A cross-domain retrieval approach such as depth image based 3D model retrieval has the challenges of occlusion, noise and view variability present in both query and training data. In this paper, we propose a new supervised deep autoencoder approach followed by semantic modeling to retrieve 3D shapes based on depth images. The key novelty is the two-fold feature abstraction to cope with the incompleteness and ambiguity present in the depth images. First, we develop a supervised autoencoder to extract robust features from both real depth images and synthetic ones rendered from 3D models, which are intended to balance reconstruction and classification capabilities of mix-domain data. Then semantic modeling of the supervised autoencoder features offers the next level of abstraction to cope with the incompleteness and ambiguity of the depth data. It is interesting that unlike any other pairwise model structures, we argue that cross-domain retrieval is still possible using only one single deep network trained on real and synthetic data. The experimental results on the NYUD2 and ModelNet10 datasets demonstrate that the proposed supervised method outperforms the recent approaches for cross-modal 3D model retrieval. (C) 2019 Elsevier B.V. All rights reserved.
机译:诸如Kinect之类的深度传感器的提高的准确性和价格可承受性已经为各种面向3D的应用创建了一个很好的深度数据源。具体地说,由于3D模型的大量应用,在计算机视觉和模式识别领域引起了广泛的关注。诸如基于深度图像的3D模型检索之类的跨域检索方法在查询和训练数据中都存在遮挡,噪声和视图可变性的挑战。在本文中,我们提出了一种新的监督式深度自动编码器方法,随后进行语义建模以基于深度图像检索3D形状。关键的新颖性是双重特征抽象,以应对深度图像中存在的不完整性和歧义性。首先,我们开发了一种有监督的自动编码器,以从真实深度图像和3D模型渲染的合成图像中提取鲁棒的特征,目的是平衡混合域数据的重建和分类能力。然后,受监管的自动编码器功能的语义建模提供了抽象的下一个层次,以应对深度数据的不完整性和歧义性。有趣的是,与任何其他成对模型结构不同,我们认为,仅使用一个对真实数据和合成数据进行训练的单个深度网络,仍然可以进行跨域检索。在NYUD2和ModelNet10数据集上的实验结果表明,所提出的监督方法优于跨模型3D模型检索的最新方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号