首页> 外文期刊>Computational Statistics >An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods
【24h】

An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods

机译:EM算法,用于估计具有广义伽马寿命的柔性固化速率模型的参数,并使用基于似然和信息的方法对模型进行判别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the Conway–Maxwell Poisson (COM-Poisson) cure rate model based on a competing risks scenario. This model includes, as special cases, some of the well-known cure rate models discussed in the literature. By assuming the time-to-event to follow the generalized gamma distribution, which contains some of the commonly used lifetime distributions as special cases, we develop exact likelihood inference based on the expectation maximization algorithm. The standard errors of the maximum likelihood estimates are obtained by inverting the observed information matrix. An extensive Monte Carlo simulation study is performed to examine the method of inference developed here. Model discrimination within the generalized gamma family is also carried out by means of likelihood- and information-based methods to select the particular lifetime distribution that provides an adequate fit to the data. Finally, a data on cancer recurrence is analyzed to illustrate the flexibility of the COM-Poisson family and the generalized gamma family so as to select a parsimonious competing cause distribution and a lifetime distribution that jointly provide an adequate fit to the data.
机译:在本文中,我们考虑了基于竞争风险情景的康韦-麦克斯韦泊松(COM-Poisson)治愈率模型。作为特殊情况,该模型包括一些文献中讨论的众所周知的治愈率模型。通过假设事件发生时间遵循广义伽玛分布,其中包含一些常用的寿命分布作为特殊情况,我们基于期望最大化算法开发了精确的似然推断。最大似然估计的标准误差是通过反转观察到的信息矩阵获得的。进行了广泛的蒙特卡洛模拟研究,以检验此处开发的推理方法。广义伽玛族中的模型判别也可以通过基于可能性和信息的方法来进行,以选择能够与数据充分拟合的特定寿命分布。最后,分析了有关癌症复发的数据,以说明COM-Poisson家族和广义伽玛家族的灵活性,以选择共同为数据提供适当拟合的简约竞争原因分布和寿命分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号