首页> 外文期刊>Journal of statistical computation and simulation >An EM type estimation procedure for the destructive exponentially weighted Poisson regression cure model under generalized gamma lifetime
【24h】

An EM type estimation procedure for the destructive exponentially weighted Poisson regression cure model under generalized gamma lifetime

机译:广义伽马寿命下破坏性指数加权Poisson回归固化模型的EM类型估计程序

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we assume the number of competing causes to follow an exponentially weighted Poisson distribution. By assuming the initial number of competing causes can undergo destruction and that the population of interest has a cure fraction, we develop the EM algorithm for the determination of the MLEs of the model parameters of such a general cure model. This model is more flexible than the promotion time cure model and also provides an interesting and realistic interpretation of the biological mechanism of the occurrence of an event of interest. Instead of assuming a particular parametric distribution for the lifetime, we assume the lifetime to belong to the wider class of generalized gamma distribution. This allows us to carry out a model discrimination to select a parsimonious lifetime distribution that provides the best fit to the data. Within the EM framework, a two-way profile likelihood approach is proposed to estimate the shape parameters. An extensive Monte Carlo simulation study is carried out to demonstrate the performance of the proposed estimation method. Model discrimination is carried out by means of the likelihood ratio test and information-based methods. Finally, a data on melanoma is analyzed for illustrative purpose.
机译:在本文中,我们假设遵循指数加权Poisson分布的竞争原因的数量。通过假设竞争原因的初始数量可能遭到破坏,并且目标人群具有治愈率,我们开发了用于确定此类一般治愈模型的模型参数的MLE的EM算法。该模型比促销时间治愈模型更灵活,并且还提供了对感兴趣事件发生的生物学机制的有趣且现实的解释。代替假定寿命的特定参数分布,我们假定寿命属于广义伽玛分布的更广泛类别。这使我们能够进行模型判别,以选择最适合数据的简约寿命分布。在EM框架内,提出了一种双向轮廓似然方法来估计形状参数。进行了广泛的蒙特卡洛模拟研究,以证明所提出的估计方法的性能。通过似然比检验和基于信息的方法进行模型判别。最后,出于说明目的,分析了有关黑色素瘤的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号