首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Deep Correlation Mining Based on Hierarchical Hybrid Networks for Heterogeneous Big Data Recommendations
【24h】

Deep Correlation Mining Based on Hierarchical Hybrid Networks for Heterogeneous Big Data Recommendations

机译:基于异构大数据建议的层次混合网络的深度相关挖掘

获取原文
获取原文并翻译 | 示例

摘要

The advancement of several significant technologies, such as artificial intelligence, cyber intelligence, and machine learning, has made big data penetrate not only into the industry and academic field but also our daily life along with a variety of cyber-enabled applications. In this article, we focus on a deep correlation mining method in heterogeneous big data environments. A hierarchical hybrid network (HHN) model is constructed to describe multitype relationships among different entities, and a series of measures are defined to quantify the internal correlations within one specific layer or external correlations between different layers. An intelligent router based on deep reinforcement learning framework is designed to generate optimal actions to route across the HHN. An improved random walk with the restart-based algorithm is then developed with the intelligent router, based on the hierarchical influence across network associated with multiple correlations. An intelligent recommendation mechanism is finally designed and applied to support users' collaboration works in scholarly big data environments. Experiments based on DBLP and ResearchGate data show the practicability and usefulness of our model and method.
机译:几种重要技术的进步,如人工智能,网络智能和机器学习,使大数据不仅渗透到工业和学术领域,而且是我们的日常生活以及各种各样的网络应用程序。在本文中,我们专注于异构大数据环境中的深度相关挖掘方法。构建分层混合网络(HHN)模型以描述不同实体之间的多立方关系,并且定义了一系列措施来量化不同层之间的一个特定层或外部相关的内部相关性。基于深度加强学习框架的智能路由器旨在为在HHN跨越HHN的路线产生最佳动作。然后基于与多个相关联的网络的分层影响,利用智能路由器进行改进的随机步行。终于设计了一个智能推荐机制,以支持用户协作在学术大数据环境中的合作。基于DBLP和研究数据的实验表明了我们模型和方法的实用性和有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号