首页> 外文期刊>Expert systems with applications >Hybrid microblog recommendation with heterogeneous features using deep neural network
【24h】

Hybrid microblog recommendation with heterogeneous features using deep neural network

机译:使用深神经网络的异质特征的混合微博推荐

获取原文
获取原文并翻译 | 示例

摘要

With the development of mobile Internet, microblog has become one of the most popular social platforms. The enormous user-generated microblogs have caused the problem of information overload, which makes users difficult to find the microblogs they actually need. Hence, how to provide users with accurate microblogs has become a hot and urgent issue. In this paper, we propose an approach of hybrid microblog recommendation, which is developed on a framework of deep neural network with a group of heterogeneous features as its input. Specifically, two new recommendation strategies are first constructed in terms of the extended user-interest tags and user interest topics, respectively. These two strategies additionally with the collaborative filtering are employed together to obtain the candidate microblogs for final recommendation. Then, we propose the heterogeneous features related to personal interests of users, interest in authors and microblog quality to describe the candidate microblogs. Finally, a deep neural network with multiple hidden layers is designed to predict and rank the microblogs. Extensive experiments conducted on the datasets of Sina Weibo and Twitter indicate that our proposed approach significantly outperforms the state-of-the-art methods. The code and the two datasets of this paper are publicly available at GitHub.
机译:随着移动互联网的发展,MicroBlog已成为最受欢迎的社交平台之一。巨大的用户生成的微博导致信息过载问题,这使得用户难以找到他们实际需要的微博。因此,如何为用户提供准确的微博已经成为一个炎热和紧急的问题。在本文中,我们提出了一种混合微博推荐的方法,该推荐是在深神经网络的框架上开发,其中一组异质特征是其输入。具体而言,首先以扩展的用户兴趣标签和用户兴趣主题来构建两个新推荐策略。使用协作滤波的这两种策略一起使用,以获得最终推荐的候选微博。然后,我们提出了与用户的个人兴趣,作者和微博质量的兴趣相关的异质特征,以描述候选微博。最后,设计具有多个隐藏层的深神经网络,用于预测和排列微博。在新浪微博和Twitter的数据集上进行的广泛实验表明我们所提出的方法显着优于最先进的方法。该论文的代码和两个数据集在GitHub上公开提供。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号