首页> 外文期刊>Computational Optimization and Applications >The convergence analysis of inexact Gauss–Newton methods for nonlinear problems
【24h】

The convergence analysis of inexact Gauss–Newton methods for nonlinear problems

机译:非线性问题的非精确高斯-牛顿方法的收敛性分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, inexact Gauss–Newton methods for nonlinear least squares problems are studied. Under the hypothesis that derivative satisfies some kinds of weak Lipschitz conditions, the local convergence properties of inexact Gauss–Newton and inexact Gauss–Newton like methods for nonlinear problems are established with the modified relative residual control. The obtained results can provide an estimate of convergence ball for inexact Gauss–Newton methods.
机译:本文研究了非线性最小二乘问题的不精确高斯-牛顿方法。在导数满足某些弱Lipschitz条件的假设下,通过修正的相对残差控制,建立了不精确的高斯-牛顿法和不精确的高斯-牛顿法对非线性问题的局部收敛性。获得的结果可以为不精确的高斯-牛顿方法提供收敛球的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号