【24h】

Learning-Based Procedural Content Generation

机译:基于学习的过程内容生成

获取原文
获取原文并翻译 | 示例

摘要

Procedural content generation (PCG) has recently become one of the hottest topics in computational intelligence and AI game research. While some substantial progress has been made in this area, there are still several challenges ranging from content evaluation to personalized content generation. In this paper, we present a novel PCG framework based on machine learning, named learning-based procedure content generation (LBPCG), to tackle a number of challenging problems. By exploring and exploiting information gained in game development and public player test, our framework can generate robust content adaptable to end-user or target players on-line with minimal interruption to their gameplay experience. As the data-driven methodology is emphasized in our framework, we develop learning-based enabling techniques to implement the various models required in our framework. For a proof of concept, we have developed a prototype based on the classic open source first-person shooter game, Quake. Simulation results suggest that our framework is promising in generating quality content.
机译:程序内容生成(PCG)最近已成为计算智能和AI游戏研究中最热门的主题之一。尽管在该领域已经取得了一些实质性进展,但是仍然存在从内容评估到个性化内容生成的若干挑战。在本文中,我们提出了一种基于机器学习的新颖PCG框架,称为基于学习的过程内容生成(LBPCG),以解决许多具有挑战性的问题。通过探索和利用在游戏开发和公共玩家测试中获得的信息,我们的框架可以生成适用于最终用户或在线目标玩家的强大内容,而对游戏体验的干扰却最小。由于在我们的框架中强调了数据驱动的方法,因此我们开发了基于学习的支持技术,以实现框架中所需的各种模型。为了进行概念验证,我们基于经典的开源第一人称射击游戏Quake开发了一个原型。仿真结果表明我们的框架在生成高质量内容方面很有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号