首页> 外文期刊>Journal of Computing and Information Science in Engineering >Deep Reinforcement Learning for Procedural Content Generation of 3D Virtual Environments
【24h】

Deep Reinforcement Learning for Procedural Content Generation of 3D Virtual Environments

机译:3D虚拟环境的程序内容生成深度加强学习

获取原文
获取原文并翻译 | 示例

摘要

This work presents a deep reinforcement learning (DRL) approach for procedural content generation (PCG) to automatically generate three-dimensional (3D) virtual environments that users can interact with. The primary objective of PCG methods is to algorithmically generate new content in order to improve user experience. Researchers have started exploring the use of machine learning (ML) methods to generate content. However, these approaches frequently implement supervised ML algorithms that require initial datasets to train their generative models. In contrast, RL algorithms do not require training data to be collected a priori since they take advantage of simulation to train their models. Considering the advantages of RL algorithms, this work presents a method that generates new 3D virtual environments by training an RL agent using a 3D simulation platform. This work extends the authors' previous work and presents the results of a case study that supports the capability of the proposed method to generate new 3D virtual environments. The ability to automatically generate new content has the potential to maintain users' engagement in a wide variety of applications such as virtual reality applications for education and training, and engineering conceptual design.
机译:这项工作提出了一种用于程序内容生成(PCG)的深度增强学习(DRL)方法,以自动生成用户可以与之交互的三维(3D)虚拟环境。 PCG方法的主要目标是算法地生成新内容,以提高用户体验。研究人员开始探索使用机器学习(ML)方法来生成内容。然而,这些方法经常实施监督ML算法,该算法需要初始数据集来培训其生成模型。相比之下,RL算法不需要培训数据来收集先验以来,因为它们利用模拟来训练其模型。考虑到RL算法的优点,这项工作介绍了一种方法,它通过使用3D仿真平台训练RL代理来生成新的3D虚拟环境。这项工作扩展了作者之前的工作,并提出了一个案例研究的结果,支持所提出的方法生成新的3D虚拟环境的能力。自动生成新内容的能力有可能维护用户在各种应用中的参与,例如教育和培训的虚拟现实应用,以及工程概念设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号