首页> 外文期刊>Computational Imaging, IEEE Transactions on >Generalized Phase Gradient Autofocus Using Semidefinite Relaxation Phase Estimation
【24h】

Generalized Phase Gradient Autofocus Using Semidefinite Relaxation Phase Estimation

机译:使用Semidefinite弛豫相位估计的广义相位梯度自动聚焦

获取原文
获取原文并翻译 | 示例

摘要

Recently, we developed a generalized phase gradient autofocus (GPGA) algorithm for performing synthetic aperture radar (SAR) autofocus over arbitrary flight paths, including both near-field and bistatic collection geometries. A key step of the GPGA algorithm is solving or finding an approximate solution to a non-deterministic polynomial-time hard (NP-hard) optimization problem, whose solution set consists of maximum marginal likelihood estimates (MMLEs) of the phase errors having marginalized over unknown complex-valued reflectivities of selected scatterers. In this work, a new approximate MMLE, termed the maxsemidefinite relaxation (Max-SDR) phase estimator, is proposed for use with the GPGA algorithm. Leveraging recent work on SDR, the Max-SDR phase estimator provides a phase error estimate with a worst-case approximation bound compared to the solution set of MMLEs (i.e., worst-case suboptimality for a feasible point to the NP-hard GPGA phase estimation problem). Additionally, in this work a specialized interior-point method (IPM) is presented for efficiently performing Max-SDR phase estimation by exploiting low-rank structure typically associated with the GPGA phase estimation problem. The presented specialized IPM is shown to have reduced computational complexity and yield a significant runtime performance improvement over a generic IPM for large-scale problems commonly encountered with SAR imaging applications. Simulation and experimental results produced using Max-SDR phase estimation are presented.
机译:最近,我们开发了一种用于在任意飞行路径上执行合成孔径雷达(SAR)自动聚焦的通用相位梯度自动对焦(GPGA)算法,包括近场和双场收集几何形状。 GPGA算法的一个关键步骤正在解决或找到对非确定性多项式硬(NP-Hard)优化问题的近似解,其解决方案集由边缘化的相位误差的最大边缘似然估计(MMLE)组成所选散射体未知的复合值反射率。在这项工作中,提出了一种称为MaxSemideFinite弛豫(MAX-SDR)相位估计器的新近似MMLe,以用于GPGA算法。利用最近的SDR工作,MAX-SDR相位估计器提供了与MMLES的解决方案组相比的最坏情况近似的相位误差估计(即,对于NP-HARD GPGA相位估计的可行点的最坏情况下优相问题)。另外,在这项工作中,通过利用通常与GPGA相位估计问题相关联的低秩结构来提出专用内部点方法(IPM)以有效地执行MAX-SDR相位估计。所提出的专业IPM被证明可以降低计算复杂性,并在通用IPM上产生显着的运行时性能改进,以实现具有SAR成像应用程序的大规模问题。提出了使用MAX-SDR相位估计产生的模拟和实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号