首页> 外文期刊>Computational Imaging, IEEE Transactions on >A Generalized Phase Gradient Autofocus Algorithm
【24h】

A Generalized Phase Gradient Autofocus Algorithm

机译:广义相位梯度自动聚焦算法

获取原文
获取原文并翻译 | 示例

摘要

The phase gradient autofocus (PGA) algorithm has seen widespread use and success within the synthetic aperture radar (SAR) imaging community. However, its use and success has largely been limited to collection geometries where either the polar format algorithm (PFA) or range migration algorithm is suitable for SAR image formation. In this paper, a generalized phase gradient autofocus (GPGA) algorithm is developed that is applicable with both the PFA and backprojection algorithm (BPA), thereby directly supporting a wide range of collection geometries and SAR imaging modalities. The GPGA algorithm is shown to preserve the four crucial signal processing steps comprising the PGA algorithm while alleviating the constraint of using a single scatterer per range cut for phase error estimation, which exists with the PGA algorithm. Moreover, the GPGA algorithm, whether using the PFA or BPA, is shown to yield an approximate maximum marginal likelihood estimate of phase errors having marginalized over unknown complex-valued reflectivities of selected scatterers. Simulation and experimental results produced by applying the GPGA algorithm to PFA and BPA SAR images are presented.
机译:相位梯度自动聚焦(PGA)算法已经在合成孔径雷达(SAR)成像社区中得到了广泛的使用和成功。但是,它的使用和成功在很大程度上限于收集几何,其中极性格式算法(PFA)或范围偏移算法都适合SAR图像形成。本文开发了一种通用相位梯度自动聚焦(GPGA)算法,该算法可同时应用于PFA和反投影算法(BPA),从而直接支持广泛的采集几何形状和SAR成像模态。所示的GPGA算法保留了包括PGA算法在内的四个关键信号处理步骤,同时减轻了PGA算法存在的每个范围切割使用单个散射体进行相位误差估计的限制。此外,无论使用PFA还是BPA,GPGA算法均显示出对相位误差的近似最大边缘似然估计,该误差已在选定散射体的未知复数值反射率上边缘化。提出了将GPGA算法应用于PFA和BPA SAR图像的仿真和实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号