首页> 外文期刊>Components, Packaging and Manufacturing Technology, IEEE Transactions on >Interconnect Reliability Characterization of a High-Density 3-D Chip-on-Chip Interconnect Technology
【24h】

Interconnect Reliability Characterization of a High-Density 3-D Chip-on-Chip Interconnect Technology

机译:高密度3D芯片级芯片互连技术的互连可靠性表征

获取原文
获取原文并翻译 | 示例
           

摘要

This paper investigates the solder interconnect reliability of a high-density 3-D chip-on-chip technology under an accelerated thermal cycling (ATC) test condition through finite element (FE) modeling and experimental validation. The fabrication of the 3-D chip-on-chip technology is accomplished with a two-step gap control bonding process to minimize the solder squeezing phenomenon. The alternative goal of this paper is placed on the influences of underfill on the interconnect failure mechanism and reliability. With the calculated plastic strain, the thermal fatigue life of the most critical solder interconnect can be estimated through an empirical Coffin–Manson fatigue life prediction model. The effectiveness of the proposed FE modeling is demonstrated through ATC tests. Finally, to identify the parameters most affecting the lead-free solder interconnect reliability, both parametric FE analysis and a simulation-based experimental design scheme based on a response surface methodology are carried out with the validated FE model. Both the numerical and experimental results that underfill can not only change the interconnect failure mechanism from an interfacial crack between the Al pad and the copper (Cu) layer of the under bump metallurgy to a cohesive solder failure, but also greatly improve the solder interconnect thermal fatigue life by as much as 2.5 times. Furthermore, the experimental design demonstrates that both the Young's modulus of intermetallic compound and thermal expansion coefficient of underfill are identified as the parameters most affecting the solder interconnect reliability of the 3-D chip-on-chip technology.
机译:本文通过有限元(FE)建模和实验验证,研究了在加速热循环(ATC)测试条件下高密度3-D芯片级芯片技术的焊料互连可靠性。 3-D芯片级芯片技术的制造是通过两步间隙控制键合工艺完成的,以最大程度地减少焊料挤压现象。本文的替代目标放在底部填充对互连故障机制和可靠性的影响上。通过计算出的塑性应变,可以通过经验性的Coffin-Manson疲劳寿命预测模型来估算最关键的焊料互连的热疲劳寿命。通过ATC测试证明了所提出的有限元建模的有效性。最后,为了确定最影响无铅焊料互连可靠性的参数,使用已验证的有限元模型进行了参数有限元分析和基于响应表面方法的基于仿真的实验设计方案。底部填充的数值和实验结果不仅可以改变互连失效机理,从底部焊盘的Al焊盘和铜(Cu)层之间的界面裂纹到内聚性焊料失效,还可以大大改善焊料互连的热性能。疲劳寿命高达2.5倍。此外,实验设计表明,金属间化合物的杨氏模量和底部填充物的热膨胀系数均被确定为最影响3-D芯片级芯片技术的焊料互连可靠性的参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号