...
首页> 外文期刊>Components, Packaging and Manufacturing Technology, IEEE Transactions on >Multichip Embedding Technology Using Fine-Pitch Cu–Cu Interconnections
【24h】

Multichip Embedding Technology Using Fine-Pitch Cu–Cu Interconnections

机译:使用细间距Cu-Cu互连的多芯片嵌入技术

获取原文
获取原文并翻译 | 示例

摘要

Increasing performance and functional density while maintaining low cost is a catalyst for technological progress in the field of packaging. From flip-chip with solder to a hybrid approach of copper and solder, many methods have been created to reach this objective. The 3-D Packaging Research Center at Georgia Tech has been revolutionizing interconnection technology with the multichip embedding chip-last approach, which utilizes ultrathin adhesive-bonded copper bumps to enable ultrafine-pitch chip-to-package interconnections. This technology has been proven to be highly reliable using a low-cost low-temperature direct copper-to-copper bonding approach at 30-$mu{rm m}$ pitch and ${sim}{rm 20}hbox{-}mu{rm m}$ standoff height copper-to-copper interconnections. This interconnection method provides a platform for integration with flip-chip packages through its proven ability to work well with different die sizes and thicknesses bonded to the surface of ultrathin organic substrates. The next step in advancing the chip-last approach is to investigate chip embedding at the single-chip and multichip levels. Consequently, this paper focuses on: 1) the design and fabrication of the test vehicle to examine the reliability of the previously demonstrated copper-to-copper interconnections after embedding a thin die in an organic substrate, and 2) assembly process development and reliability data for the interconnections. Specifically, advances in the assembly process include: 1) a novel method to perform chip-last assembly at the panel level leading to a 10–15 times reduction in assembly time per die, and 2) an improved two-step assembly process to achieve simultaneous die embedding and cavity planarization. This embedding technology and its advancements not only allow actives to be embedded in organic substrates but also enables high- r functional integration at high-throughput, making chip-last adhesive bonding with low-profile copper-to-copper interconnections a robust chip embedding solution for the next generation of highly integrated heterogeneous subsystems.
机译:在保持低成本的同时提高性能和功能密度是包装领域技术进步的催化剂。从带焊料的倒装芯片到铜和焊料的混合方法,已经创建了许多方法来实现此目标。佐治亚理工学院的3D封装研究中心已经通过多芯片嵌入后芯片方法彻底改变了互连技术,该方法利用超薄粘合剂键合的铜凸点实现超细间距芯片到封装的互连。使用低成本低温直接铜-铜键合方法以30- $ mu {rm m} $的间距和$ {sim} {rm 20} hbox {-} mu的成本,该技术已被证明是高度可靠的{rm m} $支脚高度铜铜互连。这种互连方法通过其久经考验的与不同尺寸和厚度的超薄有机基板表面键合的晶片良好工作的能力,提供了与倒装芯片封装集成的平台。推进后芯片方法的下一步是研究单芯片和多芯片级别的芯片嵌入。因此,本文着重于:1)测试工具的设计和制造,以检查先前证明的将薄裸片嵌入有机衬底中后铜铜互连的可靠性,以及2)组装工艺开发和可靠性数据用于互连。具体而言,组装工艺的进步包括:1)在面板级执行芯片最后组装的新方法,导致每个芯片的组装时间减少10–15倍; 2)改进的两步组装工艺可实现同时进行模具嵌入和型腔平面化。这种嵌入技术及其进步不仅允许将活性物嵌入有机基板中,而且还可以实现高通量的高r功能集成,从而使芯片-最后粘合剂粘结与薄型铜铜互连成为一种可靠的芯片嵌入解决方案用于下一代高度集成的异构子系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号