首页> 外文期刊>Communications in Statistics >Representative points for location-biased datasets
【24h】

Representative points for location-biased datasets

机译:位置偏向数据集的代表点

获取原文
获取原文并翻译 | 示例

摘要

Representative points (RPs) are a set of points that optimally represents a distribution in terms of mean square error. When the prior data is location biased, the direct methods such as the k-means algorithm may be inefficient to obtain the RPs. In this article, a new indirect algorithm is proposed to search the RPs based on location-biased datasets. Such an algorithm does not constrain the parameter model of the true distribution. The empirical study shows that such algorithm can obtain better RPs than the k-means algorithm.
机译:代表点(RPs)是一组点,可根据均方误差最佳地表示分布。当先验数据存在位置偏差时,直接方法(例如k-means算法)可能无法有效获得RP。本文提出了一种新的基于位置偏向数据集的间接搜索算法。这样的算法不约束真实分布的参数模型。实证研究表明,与k-means算法相比,该算法可以获得更好的RP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号