首页> 外文期刊>Communications in Statistics >Additive Outlier Detection and Estimation for the Logarithmic Autoregressive Conditional Duration Model
【24h】

Additive Outlier Detection and Estimation for the Logarithmic Autoregressive Conditional Duration Model

机译:对数自回归条件持续时间模型的加法离群值检测和估计

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the influences of additive outliers on financial durations. An outlier test statistic and an outlier detection procedure are proposed to detect and estimate outlier effects for the logarithmic Autoregressive Conditional Duration (Log-ACD) model. The proposed test statistic has an exact sampling distribution and performs very well, in terms of size and power, in a series of Monte Carlo simulations. Furthermore, the test statistic is robust to several alternative distribution assumptions. An empirical application shows that parameter estimates without considering outliers tend to be biased.
机译:本研究调查了附加异常值对财务期限的影响。提出了离群检验统计量和离群检测程序来检测和估计对数自回归条件持续时间(Log-ACD)模型的离群效应。所提出的测试统计量具有精确的采样分布,并且在一系列蒙特卡洛模拟中,在大小和功效方面都表现出色。此外,检验统计量对几种替代分布假设均具有鲁棒性。经验应用表明,不考虑离群值的参数估计往往会产生偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号