首页> 外文期刊>Expert Systems with Application >Estimation and forecasting with logarithmic autoregressive conditional duration models: A comparative study with an application
【24h】

Estimation and forecasting with logarithmic autoregressive conditional duration models: A comparative study with an application

机译:对数自回归条件持续时间模型的估计和预测:一项比较研究及其应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a semi-parametric method of parameter estimation for the class of logarithmic ACD (Log-ACD) models using the theory of estimating functions (EF). A number of theoretical results related to the corresponding EF estimators are derived. A simulation study is conducted to compare the performance of the proposed EF estimates with corresponding ML (maximum likelihood) and QML (quasi maximum likelihood) estimates. It is argued that the EF estimates are relatively easier to evaluate and have sampling properties comparable with those of ML and QML methods. Furthermore, the suggested EF estimates can be obtained without any knowledge of the distribution of errors is known. We apply all these suggested methodology for a real financial duration dataset. Our results show that Log-ACD (1,1) fits the data well giving relatively smaller variation in forecast errors than in Linear ACD (1,1) regardless of the method of estimation. In addition, the Diebold-Mariano (DM) and superior predictive ability (SPA) tests have been applied to confirm the performance of the suggested methodology. It is shown that the new method is slightly better than traditional methods in practice in terms of computation; however, there is no significant difference in forecasting ability for all models and methods.
机译:本文使用估计函数(EF)理论为对数ACD(Log-ACD)模型提出了一种半参数参数估计方法。得出了与相应的EF估计量有关的许多理论结果。进行了仿真研究,以将建议的EF估计的性能与相应的ML(最大似然)和QML(准最大似然)估计值进行比较。有人认为,EF估计相对容易评估,并且具有与ML和QML方法相当的采样属性。此外,可以在不知道任何错误分布的情况下获得建议的EF估计。我们将所有这些建议的方法应用于实际财务期限数据集。我们的结果表明,与线性ACD(1,1)相比,无论采用哪种估算方法,Log-ACD(1,1)都能很好地拟合数据,从而使预测误差的变化相对较小。此外,已应用Diebold-Mariano(DM)和卓越的预测能力(SPA)测试来确认所建议方法的性能。结果表明,新方法在计算上比传统方法稍好。但是,所有模型和方法的预测能力都没有显着差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号