首页> 外文期刊>Communications in Statistics >A Nonparametric Test for Deviation from Randomness with Applications to Stock Market Index Data
【24h】

A Nonparametric Test for Deviation from Randomness with Applications to Stock Market Index Data

机译:一种非随机性检验,用于从随机性到对股市指数数据的应用

获取原文
获取原文并翻译 | 示例

摘要

The proposed test detects deviations from randomness, without a priori distributional assumption, when observations are not independent and identically distributed (i.i.d.J, which is suitable for our motivating stock market index data. Departures from i.i.d. are tested by subdividing data into subintervals and then using a conditional probability measure within intervals as a binomial test. This nonparametric test is designed to detect deviations of neighboring observations from randomness when the dataset consists of time series observations. Simulation results and a comparison with Lo and MacKinlay 's (1988) variance ratio test showed that our proposed test is a competitive alternative.
机译:当观察值不是独立且分布均匀时,建议的测试无需先验分布假设即可检测到随机性偏差(iidJ,这适用于我们激励股票市场指数数据。通过将数据细分为子区间,然后使用区间内的条件概率度量作为二项式检验,此非参数检验旨在从数据集包含时间序列观测值时检测相邻观测值与随机性的偏差模拟结果并与Lo和MacKinlay(1988)的方差比检验进行比较我们建议的测试是一种竞争性选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号