首页> 外文期刊>Communications in Statistics >Evaluating the performance of sparse principal component analysis methods in high-dimensional data scenarios
【24h】

Evaluating the performance of sparse principal component analysis methods in high-dimensional data scenarios

机译:评估稀疏主成分分析方法在高维数据场景中的性能

获取原文
获取原文并翻译 | 示例

摘要

High-dimensional datasets have exploded into many fields of research, challenging our interpretation of the classic dimension reduction technique, Principal Component Analysis (PCA). Recently proposed Sparse PCA methods offer useful insight into understanding complex data structures. This article compares three Sparse PCA methods through extensive simulations, with the aim of providing guidelines as to which method to choose under a variety of data structures, as dictated by the variance-covariance matrix. A real gene expression dataset is used to illustrate an application of Sparse PCA in practice and show how to link simulation results with real-world problems.
机译:高维数据集已经扩展到许多研究领域,挑战了我们对经典降维技术主成分分析(PCA)的解释。最近提出的稀疏PCA方法为理解复杂的数据结构提供了有用的见解。本文通过广泛的模拟比较了三种稀疏PCA方法,目的是为方差-协方差矩阵所指示的在各种数据结构下选择哪种方法提供指导。真实的基因表达数据集用于说明稀疏PCA在实践中的应用,并展示如何将模拟结果与实际问题联系起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号