首页> 外文学位 >Machine Learning from Faulty Data: Optimal Sparse L1-Norm Principal-Component Analysis
【24h】

Machine Learning from Faulty Data: Optimal Sparse L1-Norm Principal-Component Analysis

机译:从错误数据进行机器学习:最佳稀疏L1-Norm主成分分析

获取原文
获取原文并翻译 | 示例

摘要

With the advent of big-data involving high-dimensional large data sets, there is a constant demand for robust algorithms to extract meaningful information through simpler and low-dimensional representation. Such representations not only uncover previously unobserved patterns but also often improve the system performance. Principal Components Analysis (PCA), arguably the most widely used dimensionality reduction technique, holds its important applications in machine learning, wireless communication, finances, and statistics (to name a few). While enjoying successful use, conventional PCA suffers from two major drawbacks. Firstly, PCA is highly sensitive to corrupted/outlier points, even when they appear sparingly, in the data. Secondly, principal components are, in general, combinations of all original features and are typically non-zero, which makes them difficult to interpret or extract features.;To address the above challenges, the research herein focuses on the following aspects: (i) optimal computation of sparse L1-norm principal-component analysis; (ii) computational advances in sparse L1-norm principal-components of multi-dimensional data via robust iterative procedures; (iii) low-complexity computation of L1-norm principal-components via bit flipping; (iv) outlier processing techniques by utilizing the robust L1-principal subspace designs; and (v) reliability based near-maximum-likelihood (near-ML) decoding of Golden codes.
机译:随着涉及高维大数据集的大数据的出现,对鲁棒算法的需求不断增长,以通过更简单和低维的表示来提取有意义的信息。这样的表示不仅揭示了以前无法观察到的模式,而且常常可以提高系统性能。主成分分析(PCA)可以说是使用最广泛的降维技术,在机器学习,无线通信,财务和统计(仅举几例)中占有重要的地位。在享受成功使用的同时,传统的PCA具有两个主要缺点。首先,PCA对损坏/异常点(即使它们很少出现在数据中)高度敏感。其次,主要成分通常是所有原始特征的组合,并且通常不为零,这使得它们难以解释或提取特征。为了解决上述挑战,本文的研究集中在以下几个方面:(i)稀疏L1范数主成分分析的最佳计算; (ii)通过鲁棒的迭代程序在多维数据的稀疏L1范数主成分上的计算进展; (iii)通过位翻转来低复杂度地计算L1范数主分量; (iv)利用健壮的L1主子空间设计进行离群处理技术; (v)基于可靠性的黄金代码的接近最大似然(near-ML)解码。

著录项

  • 作者

    Chamadia, Shubham.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Electrical engineering.;Computer science.;Statistics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号